| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1chr.1 |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
eqid |
⊢ ( od ‘ 𝑃 ) = ( od ‘ 𝑃 ) |
| 3 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
| 4 |
|
eqid |
⊢ ( chr ‘ 𝑃 ) = ( chr ‘ 𝑃 ) |
| 5 |
2 3 4
|
chrval |
⊢ ( ( od ‘ 𝑃 ) ‘ ( 1r ‘ 𝑃 ) ) = ( chr ‘ 𝑃 ) |
| 6 |
|
eqid |
⊢ ( od ‘ 𝑅 ) = ( od ‘ 𝑅 ) |
| 7 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 8 |
|
eqid |
⊢ ( chr ‘ 𝑅 ) = ( chr ‘ 𝑅 ) |
| 9 |
6 7 8
|
chrval |
⊢ ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) = ( chr ‘ 𝑅 ) |
| 10 |
9
|
eqcomi |
⊢ ( chr ‘ 𝑅 ) = ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) |
| 11 |
|
id |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ CRing ) |
| 12 |
11
|
crnggrpd |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Grp ) |
| 13 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 15 |
14 7
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 16 |
13 15
|
syl |
⊢ ( 𝑅 ∈ CRing → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 17 |
8
|
chrcl |
⊢ ( 𝑅 ∈ Ring → ( chr ‘ 𝑅 ) ∈ ℕ0 ) |
| 18 |
13 17
|
syl |
⊢ ( 𝑅 ∈ CRing → ( chr ‘ 𝑅 ) ∈ ℕ0 ) |
| 19 |
|
eqid |
⊢ ( .g ‘ 𝑅 ) = ( .g ‘ 𝑅 ) |
| 20 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 21 |
14 6 19 20
|
odeq |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ∧ ( chr ‘ 𝑅 ) ∈ ℕ0 ) → ( ( chr ‘ 𝑅 ) = ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ↔ ∀ 𝑛 ∈ ℕ0 ( ( chr ‘ 𝑅 ) ∥ 𝑛 ↔ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 22 |
12 16 18 21
|
syl3anc |
⊢ ( 𝑅 ∈ CRing → ( ( chr ‘ 𝑅 ) = ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ↔ ∀ 𝑛 ∈ ℕ0 ( ( chr ‘ 𝑅 ) ∥ 𝑛 ↔ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 23 |
10 22
|
mpbii |
⊢ ( 𝑅 ∈ CRing → ∀ 𝑛 ∈ ℕ0 ( ( chr ‘ 𝑅 ) ∥ 𝑛 ↔ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 24 |
23
|
r19.21bi |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( ( chr ‘ 𝑅 ) ∥ 𝑛 ↔ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 25 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
| 26 |
13
|
adantr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
| 27 |
12
|
grpmndd |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Mnd ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → 𝑅 ∈ Mnd ) |
| 29 |
|
simpr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
| 30 |
16
|
adantr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 31 |
14 19 28 29 30
|
mulgnn0cld |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 32 |
|
simpl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → 𝑅 ∈ CRing ) |
| 33 |
14 20
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 34 |
32 13 33
|
3syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 35 |
1 14 25 26 31 34
|
ply1scleq |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( ( ( algSc ‘ 𝑃 ) ‘ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ↔ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 36 |
1
|
ply1sca |
⊢ ( 𝑅 ∈ CRing → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 37 |
36
|
adantr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 38 |
37
|
fveq2d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( .g ‘ 𝑅 ) = ( .g ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 39 |
38
|
oveqd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 𝑛 ( .g ‘ ( Scalar ‘ 𝑃 ) ) ( 1r ‘ 𝑅 ) ) ) |
| 40 |
39
|
fveq2d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 𝑛 ( .g ‘ ( Scalar ‘ 𝑃 ) ) ( 1r ‘ 𝑅 ) ) ) ) |
| 41 |
1
|
ply1assa |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ AssAlg ) |
| 42 |
41
|
adantr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → 𝑃 ∈ AssAlg ) |
| 43 |
37
|
fveq2d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 44 |
30 43
|
eleqtrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 45 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
| 46 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
| 47 |
|
eqid |
⊢ ( .g ‘ 𝑃 ) = ( .g ‘ 𝑃 ) |
| 48 |
|
eqid |
⊢ ( .g ‘ ( Scalar ‘ 𝑃 ) ) = ( .g ‘ ( Scalar ‘ 𝑃 ) ) |
| 49 |
25 45 46 47 48
|
asclmulg |
⊢ ( ( 𝑃 ∈ AssAlg ∧ 𝑛 ∈ ℕ0 ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑛 ( .g ‘ ( Scalar ‘ 𝑃 ) ) ( 1r ‘ 𝑅 ) ) ) = ( 𝑛 ( .g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
| 50 |
42 29 44 49
|
syl3anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑛 ( .g ‘ ( Scalar ‘ 𝑃 ) ) ( 1r ‘ 𝑅 ) ) ) = ( 𝑛 ( .g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
| 51 |
40 50
|
eqtrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) = ( 𝑛 ( .g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
| 52 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 53 |
1 25 20 52
|
ply1scl0 |
⊢ ( 𝑅 ∈ Ring → ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑃 ) ) |
| 54 |
32 13 53
|
3syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑃 ) ) |
| 55 |
51 54
|
eqeq12d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( ( ( algSc ‘ 𝑃 ) ‘ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ↔ ( 𝑛 ( .g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ) ) |
| 56 |
24 35 55
|
3bitr2d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( ( chr ‘ 𝑅 ) ∥ 𝑛 ↔ ( 𝑛 ( .g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ) ) |
| 57 |
56
|
ralrimiva |
⊢ ( 𝑅 ∈ CRing → ∀ 𝑛 ∈ ℕ0 ( ( chr ‘ 𝑅 ) ∥ 𝑛 ↔ ( 𝑛 ( .g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ) ) |
| 58 |
1
|
ply1crng |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ CRing ) |
| 59 |
58
|
crnggrpd |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ Grp ) |
| 60 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 61 |
1 25 14 60
|
ply1sclcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 62 |
13 16 61
|
syl2anc |
⊢ ( 𝑅 ∈ CRing → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 63 |
60 2 47 52
|
odeq |
⊢ ( ( 𝑃 ∈ Grp ∧ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ∧ ( chr ‘ 𝑅 ) ∈ ℕ0 ) → ( ( chr ‘ 𝑅 ) = ( ( od ‘ 𝑃 ) ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ↔ ∀ 𝑛 ∈ ℕ0 ( ( chr ‘ 𝑅 ) ∥ 𝑛 ↔ ( 𝑛 ( .g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ) ) ) |
| 64 |
59 62 18 63
|
syl3anc |
⊢ ( 𝑅 ∈ CRing → ( ( chr ‘ 𝑅 ) = ( ( od ‘ 𝑃 ) ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ↔ ∀ 𝑛 ∈ ℕ0 ( ( chr ‘ 𝑅 ) ∥ 𝑛 ↔ ( 𝑛 ( .g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ) ) ) |
| 65 |
57 64
|
mpbird |
⊢ ( 𝑅 ∈ CRing → ( chr ‘ 𝑅 ) = ( ( od ‘ 𝑃 ) ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
| 66 |
1 25 7 3
|
ply1scl1 |
⊢ ( 𝑅 ∈ Ring → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑃 ) ) |
| 67 |
66
|
fveq2d |
⊢ ( 𝑅 ∈ Ring → ( ( od ‘ 𝑃 ) ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( ( od ‘ 𝑃 ) ‘ ( 1r ‘ 𝑃 ) ) ) |
| 68 |
13 67
|
syl |
⊢ ( 𝑅 ∈ CRing → ( ( od ‘ 𝑃 ) ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( ( od ‘ 𝑃 ) ‘ ( 1r ‘ 𝑃 ) ) ) |
| 69 |
65 68
|
eqtr2d |
⊢ ( 𝑅 ∈ CRing → ( ( od ‘ 𝑃 ) ‘ ( 1r ‘ 𝑃 ) ) = ( chr ‘ 𝑅 ) ) |
| 70 |
5 69
|
eqtr3id |
⊢ ( 𝑅 ∈ CRing → ( chr ‘ 𝑃 ) = ( chr ‘ 𝑅 ) ) |