Step |
Hyp |
Ref |
Expression |
1 |
|
ply1chr.1 |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
eqid |
⊢ ( od ‘ 𝑃 ) = ( od ‘ 𝑃 ) |
3 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
4 |
|
eqid |
⊢ ( chr ‘ 𝑃 ) = ( chr ‘ 𝑃 ) |
5 |
2 3 4
|
chrval |
⊢ ( ( od ‘ 𝑃 ) ‘ ( 1r ‘ 𝑃 ) ) = ( chr ‘ 𝑃 ) |
6 |
|
eqid |
⊢ ( od ‘ 𝑅 ) = ( od ‘ 𝑅 ) |
7 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
8 |
|
eqid |
⊢ ( chr ‘ 𝑅 ) = ( chr ‘ 𝑅 ) |
9 |
6 7 8
|
chrval |
⊢ ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) = ( chr ‘ 𝑅 ) |
10 |
9
|
eqcomi |
⊢ ( chr ‘ 𝑅 ) = ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) |
11 |
|
id |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ CRing ) |
12 |
11
|
crnggrpd |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Grp ) |
13 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
15 |
14 7
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
16 |
13 15
|
syl |
⊢ ( 𝑅 ∈ CRing → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
17 |
8
|
chrcl |
⊢ ( 𝑅 ∈ Ring → ( chr ‘ 𝑅 ) ∈ ℕ0 ) |
18 |
13 17
|
syl |
⊢ ( 𝑅 ∈ CRing → ( chr ‘ 𝑅 ) ∈ ℕ0 ) |
19 |
|
eqid |
⊢ ( .g ‘ 𝑅 ) = ( .g ‘ 𝑅 ) |
20 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
21 |
14 6 19 20
|
odeq |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ∧ ( chr ‘ 𝑅 ) ∈ ℕ0 ) → ( ( chr ‘ 𝑅 ) = ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ↔ ∀ 𝑛 ∈ ℕ0 ( ( chr ‘ 𝑅 ) ∥ 𝑛 ↔ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
22 |
12 16 18 21
|
syl3anc |
⊢ ( 𝑅 ∈ CRing → ( ( chr ‘ 𝑅 ) = ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ↔ ∀ 𝑛 ∈ ℕ0 ( ( chr ‘ 𝑅 ) ∥ 𝑛 ↔ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
23 |
10 22
|
mpbii |
⊢ ( 𝑅 ∈ CRing → ∀ 𝑛 ∈ ℕ0 ( ( chr ‘ 𝑅 ) ∥ 𝑛 ↔ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) |
24 |
23
|
r19.21bi |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( ( chr ‘ 𝑅 ) ∥ 𝑛 ↔ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) |
25 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
26 |
13
|
adantr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
27 |
12
|
grpmndd |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Mnd ) |
28 |
27
|
adantr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → 𝑅 ∈ Mnd ) |
29 |
|
simpr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
30 |
16
|
adantr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
31 |
14 19
|
mulgnn0cl |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑛 ∈ ℕ0 ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
32 |
28 29 30 31
|
syl3anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
33 |
|
simpl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → 𝑅 ∈ CRing ) |
34 |
14 20
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
35 |
33 13 34
|
3syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
36 |
1 14 25 26 32 35
|
ply1scleq |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( ( ( algSc ‘ 𝑃 ) ‘ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ↔ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) |
37 |
1
|
ply1sca |
⊢ ( 𝑅 ∈ CRing → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
38 |
37
|
adantr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
39 |
38
|
fveq2d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( .g ‘ 𝑅 ) = ( .g ‘ ( Scalar ‘ 𝑃 ) ) ) |
40 |
39
|
oveqd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 𝑛 ( .g ‘ ( Scalar ‘ 𝑃 ) ) ( 1r ‘ 𝑅 ) ) ) |
41 |
40
|
fveq2d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 𝑛 ( .g ‘ ( Scalar ‘ 𝑃 ) ) ( 1r ‘ 𝑅 ) ) ) ) |
42 |
1
|
ply1assa |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ AssAlg ) |
43 |
42
|
adantr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → 𝑃 ∈ AssAlg ) |
44 |
38
|
fveq2d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
45 |
30 44
|
eleqtrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
46 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
47 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
48 |
|
eqid |
⊢ ( .g ‘ 𝑃 ) = ( .g ‘ 𝑃 ) |
49 |
|
eqid |
⊢ ( .g ‘ ( Scalar ‘ 𝑃 ) ) = ( .g ‘ ( Scalar ‘ 𝑃 ) ) |
50 |
25 46 47 48 49
|
asclmulg |
⊢ ( ( 𝑃 ∈ AssAlg ∧ 𝑛 ∈ ℕ0 ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑛 ( .g ‘ ( Scalar ‘ 𝑃 ) ) ( 1r ‘ 𝑅 ) ) ) = ( 𝑛 ( .g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
51 |
43 29 45 50
|
syl3anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑛 ( .g ‘ ( Scalar ‘ 𝑃 ) ) ( 1r ‘ 𝑅 ) ) ) = ( 𝑛 ( .g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
52 |
41 51
|
eqtrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) = ( 𝑛 ( .g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
53 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
54 |
1 25 20 53
|
ply1scl0 |
⊢ ( 𝑅 ∈ Ring → ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑃 ) ) |
55 |
33 13 54
|
3syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑃 ) ) |
56 |
52 55
|
eqeq12d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( ( ( algSc ‘ 𝑃 ) ‘ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ↔ ( 𝑛 ( .g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ) ) |
57 |
24 36 56
|
3bitr2d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑛 ∈ ℕ0 ) → ( ( chr ‘ 𝑅 ) ∥ 𝑛 ↔ ( 𝑛 ( .g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ) ) |
58 |
57
|
ralrimiva |
⊢ ( 𝑅 ∈ CRing → ∀ 𝑛 ∈ ℕ0 ( ( chr ‘ 𝑅 ) ∥ 𝑛 ↔ ( 𝑛 ( .g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ) ) |
59 |
1
|
ply1crng |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ CRing ) |
60 |
59
|
crnggrpd |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ Grp ) |
61 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
62 |
1 25 14 61
|
ply1sclcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ) |
63 |
13 16 62
|
syl2anc |
⊢ ( 𝑅 ∈ CRing → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ) |
64 |
61 2 48 53
|
odeq |
⊢ ( ( 𝑃 ∈ Grp ∧ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ∧ ( chr ‘ 𝑅 ) ∈ ℕ0 ) → ( ( chr ‘ 𝑅 ) = ( ( od ‘ 𝑃 ) ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ↔ ∀ 𝑛 ∈ ℕ0 ( ( chr ‘ 𝑅 ) ∥ 𝑛 ↔ ( 𝑛 ( .g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ) ) ) |
65 |
60 63 18 64
|
syl3anc |
⊢ ( 𝑅 ∈ CRing → ( ( chr ‘ 𝑅 ) = ( ( od ‘ 𝑃 ) ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ↔ ∀ 𝑛 ∈ ℕ0 ( ( chr ‘ 𝑅 ) ∥ 𝑛 ↔ ( 𝑛 ( .g ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑃 ) ) ) ) |
66 |
58 65
|
mpbird |
⊢ ( 𝑅 ∈ CRing → ( chr ‘ 𝑅 ) = ( ( od ‘ 𝑃 ) ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
67 |
1 25 7 3
|
ply1scl1 |
⊢ ( 𝑅 ∈ Ring → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑃 ) ) |
68 |
67
|
fveq2d |
⊢ ( 𝑅 ∈ Ring → ( ( od ‘ 𝑃 ) ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( ( od ‘ 𝑃 ) ‘ ( 1r ‘ 𝑃 ) ) ) |
69 |
13 68
|
syl |
⊢ ( 𝑅 ∈ CRing → ( ( od ‘ 𝑃 ) ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( ( od ‘ 𝑃 ) ‘ ( 1r ‘ 𝑃 ) ) ) |
70 |
66 69
|
eqtr2d |
⊢ ( 𝑅 ∈ CRing → ( ( od ‘ 𝑃 ) ‘ ( 1r ‘ 𝑃 ) ) = ( chr ‘ 𝑅 ) ) |
71 |
5 70
|
eqtr3id |
⊢ ( 𝑅 ∈ CRing → ( chr ‘ 𝑃 ) = ( chr ‘ 𝑅 ) ) |