Metamath Proof Explorer


Theorem ply1chr

Description: The characteristic of a polynomial ring is the characteristic of the underlying ring. (Contributed by Thierry Arnoux, 24-Jul-2024)

Ref Expression
Hypothesis ply1chr.1 P=Poly1R
Assertion ply1chr RCRingchrP=chrR

Proof

Step Hyp Ref Expression
1 ply1chr.1 P=Poly1R
2 eqid odP=odP
3 eqid 1P=1P
4 eqid chrP=chrP
5 2 3 4 chrval odP1P=chrP
6 eqid odR=odR
7 eqid 1R=1R
8 eqid chrR=chrR
9 6 7 8 chrval odR1R=chrR
10 9 eqcomi chrR=odR1R
11 id RCRingRCRing
12 11 crnggrpd RCRingRGrp
13 crngring RCRingRRing
14 eqid BaseR=BaseR
15 14 7 ringidcl RRing1RBaseR
16 13 15 syl RCRing1RBaseR
17 8 chrcl RRingchrR0
18 13 17 syl RCRingchrR0
19 eqid R=R
20 eqid 0R=0R
21 14 6 19 20 odeq RGrp1RBaseRchrR0chrR=odR1Rn0chrRnnR1R=0R
22 12 16 18 21 syl3anc RCRingchrR=odR1Rn0chrRnnR1R=0R
23 10 22 mpbii RCRingn0chrRnnR1R=0R
24 23 r19.21bi RCRingn0chrRnnR1R=0R
25 eqid algScP=algScP
26 13 adantr RCRingn0RRing
27 12 grpmndd RCRingRMnd
28 27 adantr RCRingn0RMnd
29 simpr RCRingn0n0
30 16 adantr RCRingn01RBaseR
31 14 19 28 29 30 mulgnn0cld RCRingn0nR1RBaseR
32 simpl RCRingn0RCRing
33 14 20 ring0cl RRing0RBaseR
34 32 13 33 3syl RCRingn00RBaseR
35 1 14 25 26 31 34 ply1scleq RCRingn0algScPnR1R=algScP0RnR1R=0R
36 1 ply1sca RCRingR=ScalarP
37 36 adantr RCRingn0R=ScalarP
38 37 fveq2d RCRingn0R=ScalarP
39 38 oveqd RCRingn0nR1R=nScalarP1R
40 39 fveq2d RCRingn0algScPnR1R=algScPnScalarP1R
41 1 ply1assa RCRingPAssAlg
42 41 adantr RCRingn0PAssAlg
43 37 fveq2d RCRingn0BaseR=BaseScalarP
44 30 43 eleqtrd RCRingn01RBaseScalarP
45 eqid ScalarP=ScalarP
46 eqid BaseScalarP=BaseScalarP
47 eqid P=P
48 eqid ScalarP=ScalarP
49 25 45 46 47 48 asclmulg PAssAlgn01RBaseScalarPalgScPnScalarP1R=nPalgScP1R
50 42 29 44 49 syl3anc RCRingn0algScPnScalarP1R=nPalgScP1R
51 40 50 eqtrd RCRingn0algScPnR1R=nPalgScP1R
52 eqid 0P=0P
53 1 25 20 52 ply1scl0 RRingalgScP0R=0P
54 32 13 53 3syl RCRingn0algScP0R=0P
55 51 54 eqeq12d RCRingn0algScPnR1R=algScP0RnPalgScP1R=0P
56 24 35 55 3bitr2d RCRingn0chrRnnPalgScP1R=0P
57 56 ralrimiva RCRingn0chrRnnPalgScP1R=0P
58 1 ply1crng RCRingPCRing
59 58 crnggrpd RCRingPGrp
60 eqid BaseP=BaseP
61 1 25 14 60 ply1sclcl RRing1RBaseRalgScP1RBaseP
62 13 16 61 syl2anc RCRingalgScP1RBaseP
63 60 2 47 52 odeq PGrpalgScP1RBasePchrR0chrR=odPalgScP1Rn0chrRnnPalgScP1R=0P
64 59 62 18 63 syl3anc RCRingchrR=odPalgScP1Rn0chrRnnPalgScP1R=0P
65 57 64 mpbird RCRingchrR=odPalgScP1R
66 1 25 7 3 ply1scl1 RRingalgScP1R=1P
67 66 fveq2d RRingodPalgScP1R=odP1P
68 13 67 syl RCRingodPalgScP1R=odP1P
69 65 68 eqtr2d RCRingodP1P=chrR
70 5 69 eqtr3id RCRingchrP=chrR