| Step |
Hyp |
Ref |
Expression |
| 1 |
|
asclmulg.a |
|- A = ( algSc ` W ) |
| 2 |
|
asclmulg.f |
|- F = ( Scalar ` W ) |
| 3 |
|
asclmulg.k |
|- K = ( Base ` F ) |
| 4 |
|
asclmulg.m |
|- .^ = ( .g ` W ) |
| 5 |
|
asclmulg.t |
|- .* = ( .g ` F ) |
| 6 |
|
assalmod |
|- ( W e. AssAlg -> W e. LMod ) |
| 7 |
6
|
3ad2ant1 |
|- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> W e. LMod ) |
| 8 |
|
simp3 |
|- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> X e. K ) |
| 9 |
|
simp2 |
|- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> N e. NN0 ) |
| 10 |
|
assaring |
|- ( W e. AssAlg -> W e. Ring ) |
| 11 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 12 |
|
eqid |
|- ( 1r ` W ) = ( 1r ` W ) |
| 13 |
11 12
|
ringidcl |
|- ( W e. Ring -> ( 1r ` W ) e. ( Base ` W ) ) |
| 14 |
10 13
|
syl |
|- ( W e. AssAlg -> ( 1r ` W ) e. ( Base ` W ) ) |
| 15 |
14
|
3ad2ant1 |
|- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> ( 1r ` W ) e. ( Base ` W ) ) |
| 16 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
| 17 |
11 2 16 3 4 5
|
lmodvsmmulgdi |
|- ( ( W e. LMod /\ ( X e. K /\ N e. NN0 /\ ( 1r ` W ) e. ( Base ` W ) ) ) -> ( N .^ ( X ( .s ` W ) ( 1r ` W ) ) ) = ( ( N .* X ) ( .s ` W ) ( 1r ` W ) ) ) |
| 18 |
7 8 9 15 17
|
syl13anc |
|- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> ( N .^ ( X ( .s ` W ) ( 1r ` W ) ) ) = ( ( N .* X ) ( .s ` W ) ( 1r ` W ) ) ) |
| 19 |
1 2 3 16 12
|
asclval |
|- ( X e. K -> ( A ` X ) = ( X ( .s ` W ) ( 1r ` W ) ) ) |
| 20 |
8 19
|
syl |
|- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> ( A ` X ) = ( X ( .s ` W ) ( 1r ` W ) ) ) |
| 21 |
20
|
oveq2d |
|- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> ( N .^ ( A ` X ) ) = ( N .^ ( X ( .s ` W ) ( 1r ` W ) ) ) ) |
| 22 |
2
|
assasca |
|- ( W e. AssAlg -> F e. Ring ) |
| 23 |
22
|
ringgrpd |
|- ( W e. AssAlg -> F e. Grp ) |
| 24 |
23
|
3ad2ant1 |
|- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> F e. Grp ) |
| 25 |
9
|
nn0zd |
|- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> N e. ZZ ) |
| 26 |
3 5 24 25 8
|
mulgcld |
|- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> ( N .* X ) e. K ) |
| 27 |
1 2 3 16 12
|
asclval |
|- ( ( N .* X ) e. K -> ( A ` ( N .* X ) ) = ( ( N .* X ) ( .s ` W ) ( 1r ` W ) ) ) |
| 28 |
26 27
|
syl |
|- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> ( A ` ( N .* X ) ) = ( ( N .* X ) ( .s ` W ) ( 1r ` W ) ) ) |
| 29 |
18 21 28
|
3eqtr4rd |
|- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> ( A ` ( N .* X ) ) = ( N .^ ( A ` X ) ) ) |