Step |
Hyp |
Ref |
Expression |
1 |
|
asclmulg.a |
|- A = ( algSc ` W ) |
2 |
|
asclmulg.f |
|- F = ( Scalar ` W ) |
3 |
|
asclmulg.k |
|- K = ( Base ` F ) |
4 |
|
asclmulg.m |
|- .^ = ( .g ` W ) |
5 |
|
asclmulg.t |
|- .* = ( .g ` F ) |
6 |
|
assalmod |
|- ( W e. AssAlg -> W e. LMod ) |
7 |
6
|
3ad2ant1 |
|- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> W e. LMod ) |
8 |
|
simp3 |
|- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> X e. K ) |
9 |
|
simp2 |
|- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> N e. NN0 ) |
10 |
|
assaring |
|- ( W e. AssAlg -> W e. Ring ) |
11 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
12 |
|
eqid |
|- ( 1r ` W ) = ( 1r ` W ) |
13 |
11 12
|
ringidcl |
|- ( W e. Ring -> ( 1r ` W ) e. ( Base ` W ) ) |
14 |
10 13
|
syl |
|- ( W e. AssAlg -> ( 1r ` W ) e. ( Base ` W ) ) |
15 |
14
|
3ad2ant1 |
|- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> ( 1r ` W ) e. ( Base ` W ) ) |
16 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
17 |
11 2 16 3 4 5
|
lmodvsmmulgdi |
|- ( ( W e. LMod /\ ( X e. K /\ N e. NN0 /\ ( 1r ` W ) e. ( Base ` W ) ) ) -> ( N .^ ( X ( .s ` W ) ( 1r ` W ) ) ) = ( ( N .* X ) ( .s ` W ) ( 1r ` W ) ) ) |
18 |
7 8 9 15 17
|
syl13anc |
|- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> ( N .^ ( X ( .s ` W ) ( 1r ` W ) ) ) = ( ( N .* X ) ( .s ` W ) ( 1r ` W ) ) ) |
19 |
1 2 3 16 12
|
asclval |
|- ( X e. K -> ( A ` X ) = ( X ( .s ` W ) ( 1r ` W ) ) ) |
20 |
8 19
|
syl |
|- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> ( A ` X ) = ( X ( .s ` W ) ( 1r ` W ) ) ) |
21 |
20
|
oveq2d |
|- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> ( N .^ ( A ` X ) ) = ( N .^ ( X ( .s ` W ) ( 1r ` W ) ) ) ) |
22 |
2
|
assasca |
|- ( W e. AssAlg -> F e. CRing ) |
23 |
22
|
3ad2ant1 |
|- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> F e. CRing ) |
24 |
23
|
crnggrpd |
|- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> F e. Grp ) |
25 |
9
|
nn0zd |
|- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> N e. ZZ ) |
26 |
3 5 24 25 8
|
mulgcld |
|- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> ( N .* X ) e. K ) |
27 |
1 2 3 16 12
|
asclval |
|- ( ( N .* X ) e. K -> ( A ` ( N .* X ) ) = ( ( N .* X ) ( .s ` W ) ( 1r ` W ) ) ) |
28 |
26 27
|
syl |
|- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> ( A ` ( N .* X ) ) = ( ( N .* X ) ( .s ` W ) ( 1r ` W ) ) ) |
29 |
18 21 28
|
3eqtr4rd |
|- ( ( W e. AssAlg /\ N e. NN0 /\ X e. K ) -> ( A ` ( N .* X ) ) = ( N .^ ( A ` X ) ) ) |