| Step |
Hyp |
Ref |
Expression |
| 1 |
|
m1pmeq.p |
|- P = ( Poly1 ` F ) |
| 2 |
|
m1pmeq.m |
|- M = ( Monic1p ` F ) |
| 3 |
|
m1pmeq.u |
|- U = ( Unit ` P ) |
| 4 |
|
m1pmeq.t |
|- .x. = ( .r ` P ) |
| 5 |
|
m1pmeq.r |
|- ( ph -> F e. Field ) |
| 6 |
|
m1pmeq.f |
|- ( ph -> I e. M ) |
| 7 |
|
m1pmeq.g |
|- ( ph -> J e. M ) |
| 8 |
|
m1pmeq.h |
|- ( ph -> K e. U ) |
| 9 |
|
m1pmeq.1 |
|- ( ph -> I = ( K .x. J ) ) |
| 10 |
5
|
flddrngd |
|- ( ph -> F e. DivRing ) |
| 11 |
10
|
drngringd |
|- ( ph -> F e. Ring ) |
| 12 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 13 |
12 3
|
unitcl |
|- ( K e. U -> K e. ( Base ` P ) ) |
| 14 |
8 13
|
syl |
|- ( ph -> K e. ( Base ` P ) ) |
| 15 |
8 3
|
eleqtrdi |
|- ( ph -> K e. ( Unit ` P ) ) |
| 16 |
|
eqid |
|- ( algSc ` P ) = ( algSc ` P ) |
| 17 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
| 18 |
|
eqid |
|- ( 0g ` F ) = ( 0g ` F ) |
| 19 |
|
eqid |
|- ( deg1 ` F ) = ( deg1 ` F ) |
| 20 |
1 16 17 18 5 19 14
|
ply1unit |
|- ( ph -> ( K e. ( Unit ` P ) <-> ( ( deg1 ` F ) ` K ) = 0 ) ) |
| 21 |
15 20
|
mpbid |
|- ( ph -> ( ( deg1 ` F ) ` K ) = 0 ) |
| 22 |
|
0le0 |
|- 0 <_ 0 |
| 23 |
21 22
|
eqbrtrdi |
|- ( ph -> ( ( deg1 ` F ) ` K ) <_ 0 ) |
| 24 |
19 1 12 16
|
deg1le0 |
|- ( ( F e. Ring /\ K e. ( Base ` P ) ) -> ( ( ( deg1 ` F ) ` K ) <_ 0 <-> K = ( ( algSc ` P ) ` ( ( coe1 ` K ) ` 0 ) ) ) ) |
| 25 |
24
|
biimpa |
|- ( ( ( F e. Ring /\ K e. ( Base ` P ) ) /\ ( ( deg1 ` F ) ` K ) <_ 0 ) -> K = ( ( algSc ` P ) ` ( ( coe1 ` K ) ` 0 ) ) ) |
| 26 |
11 14 23 25
|
syl21anc |
|- ( ph -> K = ( ( algSc ` P ) ` ( ( coe1 ` K ) ` 0 ) ) ) |
| 27 |
|
eqid |
|- ( .r ` F ) = ( .r ` F ) |
| 28 |
|
eqid |
|- ( 1r ` F ) = ( 1r ` F ) |
| 29 |
21
|
fveq2d |
|- ( ph -> ( ( coe1 ` K ) ` ( ( deg1 ` F ) ` K ) ) = ( ( coe1 ` K ) ` 0 ) ) |
| 30 |
|
0nn0 |
|- 0 e. NN0 |
| 31 |
21 30
|
eqeltrdi |
|- ( ph -> ( ( deg1 ` F ) ` K ) e. NN0 ) |
| 32 |
|
eqid |
|- ( coe1 ` K ) = ( coe1 ` K ) |
| 33 |
32 12 1 17
|
coe1fvalcl |
|- ( ( K e. ( Base ` P ) /\ ( ( deg1 ` F ) ` K ) e. NN0 ) -> ( ( coe1 ` K ) ` ( ( deg1 ` F ) ` K ) ) e. ( Base ` F ) ) |
| 34 |
14 31 33
|
syl2anc |
|- ( ph -> ( ( coe1 ` K ) ` ( ( deg1 ` F ) ` K ) ) e. ( Base ` F ) ) |
| 35 |
29 34
|
eqeltrrd |
|- ( ph -> ( ( coe1 ` K ) ` 0 ) e. ( Base ` F ) ) |
| 36 |
17 27 28 11 35
|
ringridmd |
|- ( ph -> ( ( ( coe1 ` K ) ` 0 ) ( .r ` F ) ( 1r ` F ) ) = ( ( coe1 ` K ) ` 0 ) ) |
| 37 |
9
|
fveq2d |
|- ( ph -> ( coe1 ` I ) = ( coe1 ` ( K .x. J ) ) ) |
| 38 |
9
|
fveq2d |
|- ( ph -> ( ( deg1 ` F ) ` I ) = ( ( deg1 ` F ) ` ( K .x. J ) ) ) |
| 39 |
|
eqid |
|- ( RLReg ` F ) = ( RLReg ` F ) |
| 40 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
| 41 |
|
drngnzr |
|- ( F e. DivRing -> F e. NzRing ) |
| 42 |
10 41
|
syl |
|- ( ph -> F e. NzRing ) |
| 43 |
1
|
ply1nz |
|- ( F e. NzRing -> P e. NzRing ) |
| 44 |
42 43
|
syl |
|- ( ph -> P e. NzRing ) |
| 45 |
3 40 44 8
|
unitnz |
|- ( ph -> K =/= ( 0g ` P ) ) |
| 46 |
|
fldidom |
|- ( F e. Field -> F e. IDomn ) |
| 47 |
5 46
|
syl |
|- ( ph -> F e. IDomn ) |
| 48 |
47
|
idomdomd |
|- ( ph -> F e. Domn ) |
| 49 |
19 1 18 12 40 11 14 23
|
deg1le0eq0 |
|- ( ph -> ( K = ( 0g ` P ) <-> ( ( coe1 ` K ) ` 0 ) = ( 0g ` F ) ) ) |
| 50 |
49
|
necon3bid |
|- ( ph -> ( K =/= ( 0g ` P ) <-> ( ( coe1 ` K ) ` 0 ) =/= ( 0g ` F ) ) ) |
| 51 |
45 50
|
mpbid |
|- ( ph -> ( ( coe1 ` K ) ` 0 ) =/= ( 0g ` F ) ) |
| 52 |
29 51
|
eqnetrd |
|- ( ph -> ( ( coe1 ` K ) ` ( ( deg1 ` F ) ` K ) ) =/= ( 0g ` F ) ) |
| 53 |
17 39 18
|
domnrrg |
|- ( ( F e. Domn /\ ( ( coe1 ` K ) ` ( ( deg1 ` F ) ` K ) ) e. ( Base ` F ) /\ ( ( coe1 ` K ) ` ( ( deg1 ` F ) ` K ) ) =/= ( 0g ` F ) ) -> ( ( coe1 ` K ) ` ( ( deg1 ` F ) ` K ) ) e. ( RLReg ` F ) ) |
| 54 |
48 34 52 53
|
syl3anc |
|- ( ph -> ( ( coe1 ` K ) ` ( ( deg1 ` F ) ` K ) ) e. ( RLReg ` F ) ) |
| 55 |
1 12 2
|
mon1pcl |
|- ( J e. M -> J e. ( Base ` P ) ) |
| 56 |
7 55
|
syl |
|- ( ph -> J e. ( Base ` P ) ) |
| 57 |
1 40 2
|
mon1pn0 |
|- ( J e. M -> J =/= ( 0g ` P ) ) |
| 58 |
7 57
|
syl |
|- ( ph -> J =/= ( 0g ` P ) ) |
| 59 |
19 1 39 12 4 40 11 14 45 54 56 58
|
deg1mul2 |
|- ( ph -> ( ( deg1 ` F ) ` ( K .x. J ) ) = ( ( ( deg1 ` F ) ` K ) + ( ( deg1 ` F ) ` J ) ) ) |
| 60 |
38 59
|
eqtrd |
|- ( ph -> ( ( deg1 ` F ) ` I ) = ( ( ( deg1 ` F ) ` K ) + ( ( deg1 ` F ) ` J ) ) ) |
| 61 |
37 60
|
fveq12d |
|- ( ph -> ( ( coe1 ` I ) ` ( ( deg1 ` F ) ` I ) ) = ( ( coe1 ` ( K .x. J ) ) ` ( ( ( deg1 ` F ) ` K ) + ( ( deg1 ` F ) ` J ) ) ) ) |
| 62 |
19 28 2
|
mon1pldg |
|- ( I e. M -> ( ( coe1 ` I ) ` ( ( deg1 ` F ) ` I ) ) = ( 1r ` F ) ) |
| 63 |
6 62
|
syl |
|- ( ph -> ( ( coe1 ` I ) ` ( ( deg1 ` F ) ` I ) ) = ( 1r ` F ) ) |
| 64 |
1 4 27 12 19 40 11 14 45 56 58
|
coe1mul4 |
|- ( ph -> ( ( coe1 ` ( K .x. J ) ) ` ( ( ( deg1 ` F ) ` K ) + ( ( deg1 ` F ) ` J ) ) ) = ( ( ( coe1 ` K ) ` ( ( deg1 ` F ) ` K ) ) ( .r ` F ) ( ( coe1 ` J ) ` ( ( deg1 ` F ) ` J ) ) ) ) |
| 65 |
19 28 2
|
mon1pldg |
|- ( J e. M -> ( ( coe1 ` J ) ` ( ( deg1 ` F ) ` J ) ) = ( 1r ` F ) ) |
| 66 |
7 65
|
syl |
|- ( ph -> ( ( coe1 ` J ) ` ( ( deg1 ` F ) ` J ) ) = ( 1r ` F ) ) |
| 67 |
29 66
|
oveq12d |
|- ( ph -> ( ( ( coe1 ` K ) ` ( ( deg1 ` F ) ` K ) ) ( .r ` F ) ( ( coe1 ` J ) ` ( ( deg1 ` F ) ` J ) ) ) = ( ( ( coe1 ` K ) ` 0 ) ( .r ` F ) ( 1r ` F ) ) ) |
| 68 |
64 67
|
eqtrd |
|- ( ph -> ( ( coe1 ` ( K .x. J ) ) ` ( ( ( deg1 ` F ) ` K ) + ( ( deg1 ` F ) ` J ) ) ) = ( ( ( coe1 ` K ) ` 0 ) ( .r ` F ) ( 1r ` F ) ) ) |
| 69 |
61 63 68
|
3eqtr3rd |
|- ( ph -> ( ( ( coe1 ` K ) ` 0 ) ( .r ` F ) ( 1r ` F ) ) = ( 1r ` F ) ) |
| 70 |
36 69
|
eqtr3d |
|- ( ph -> ( ( coe1 ` K ) ` 0 ) = ( 1r ` F ) ) |
| 71 |
70
|
fveq2d |
|- ( ph -> ( ( algSc ` P ) ` ( ( coe1 ` K ) ` 0 ) ) = ( ( algSc ` P ) ` ( 1r ` F ) ) ) |
| 72 |
|
eqid |
|- ( 1r ` P ) = ( 1r ` P ) |
| 73 |
1 16 28 72 11
|
ply1ascl1 |
|- ( ph -> ( ( algSc ` P ) ` ( 1r ` F ) ) = ( 1r ` P ) ) |
| 74 |
26 71 73
|
3eqtrd |
|- ( ph -> K = ( 1r ` P ) ) |
| 75 |
74
|
oveq1d |
|- ( ph -> ( K .x. J ) = ( ( 1r ` P ) .x. J ) ) |
| 76 |
1
|
ply1ring |
|- ( F e. Ring -> P e. Ring ) |
| 77 |
11 76
|
syl |
|- ( ph -> P e. Ring ) |
| 78 |
12 4 72 77 56
|
ringlidmd |
|- ( ph -> ( ( 1r ` P ) .x. J ) = J ) |
| 79 |
9 75 78
|
3eqtrd |
|- ( ph -> I = J ) |