Metamath Proof Explorer


Theorem domnmuln0rd

Description: In a domain, factors of a nonzero product are nonzero. (Contributed by Thierry Arnoux, 8-Jun-2025)

Ref Expression
Hypotheses domnmuln0rd.b 𝐵 = ( Base ‘ 𝑅 )
domnmuln0rd.t · = ( .r𝑅 )
domnmuln0rd.z 0 = ( 0g𝑅 )
domnmuln0rd.1 ( 𝜑𝑅 ∈ Domn )
domnmuln0rd.2 ( 𝜑𝑋𝐵 )
domnmuln0rd.3 ( 𝜑𝑌𝐵 )
domnmuln0rd.4 ( 𝜑 → ( 𝑋 · 𝑌 ) ≠ 0 )
Assertion domnmuln0rd ( 𝜑 → ( 𝑋0𝑌0 ) )

Proof

Step Hyp Ref Expression
1 domnmuln0rd.b 𝐵 = ( Base ‘ 𝑅 )
2 domnmuln0rd.t · = ( .r𝑅 )
3 domnmuln0rd.z 0 = ( 0g𝑅 )
4 domnmuln0rd.1 ( 𝜑𝑅 ∈ Domn )
5 domnmuln0rd.2 ( 𝜑𝑋𝐵 )
6 domnmuln0rd.3 ( 𝜑𝑌𝐵 )
7 domnmuln0rd.4 ( 𝜑 → ( 𝑋 · 𝑌 ) ≠ 0 )
8 1 2 3 domneq0 ( ( 𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 𝑋 = 0𝑌 = 0 ) ) )
9 4 5 6 8 syl3anc ( 𝜑 → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 𝑋 = 0𝑌 = 0 ) ) )
10 9 necon3abid ( 𝜑 → ( ( 𝑋 · 𝑌 ) ≠ 0 ↔ ¬ ( 𝑋 = 0𝑌 = 0 ) ) )
11 7 10 mpbid ( 𝜑 → ¬ ( 𝑋 = 0𝑌 = 0 ) )
12 ioran ( ¬ ( 𝑋 = 0𝑌 = 0 ) ↔ ( ¬ 𝑋 = 0 ∧ ¬ 𝑌 = 0 ) )
13 11 12 sylib ( 𝜑 → ( ¬ 𝑋 = 0 ∧ ¬ 𝑌 = 0 ) )
14 neqne ( ¬ 𝑋 = 0𝑋0 )
15 neqne ( ¬ 𝑌 = 0𝑌0 )
16 14 15 anim12i ( ( ¬ 𝑋 = 0 ∧ ¬ 𝑌 = 0 ) → ( 𝑋0𝑌0 ) )
17 13 16 syl ( 𝜑 → ( 𝑋0𝑌0 ) )