Step |
Hyp |
Ref |
Expression |
1 |
|
domnmuln0rd.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
domnmuln0rd.t |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
domnmuln0rd.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
domnmuln0rd.1 |
⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
5 |
|
domnmuln0rd.2 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
domnmuln0rd.3 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
domnmuln0rd.4 |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ≠ 0 ) |
8 |
1 2 3
|
domneq0 |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) ) |
9 |
4 5 6 8
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) ) |
10 |
9
|
necon3abid |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) ≠ 0 ↔ ¬ ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) ) |
11 |
7 10
|
mpbid |
⊢ ( 𝜑 → ¬ ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) |
12 |
|
ioran |
⊢ ( ¬ ( 𝑋 = 0 ∨ 𝑌 = 0 ) ↔ ( ¬ 𝑋 = 0 ∧ ¬ 𝑌 = 0 ) ) |
13 |
11 12
|
sylib |
⊢ ( 𝜑 → ( ¬ 𝑋 = 0 ∧ ¬ 𝑌 = 0 ) ) |
14 |
|
neqne |
⊢ ( ¬ 𝑋 = 0 → 𝑋 ≠ 0 ) |
15 |
|
neqne |
⊢ ( ¬ 𝑌 = 0 → 𝑌 ≠ 0 ) |
16 |
14 15
|
anim12i |
⊢ ( ( ¬ 𝑋 = 0 ∧ ¬ 𝑌 = 0 ) → ( 𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ) ) |
17 |
13 16
|
syl |
⊢ ( 𝜑 → ( 𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ) ) |