Metamath Proof Explorer


Theorem domnmuln0rd

Description: In a domain, factors of a nonzero product are nonzero. (Contributed by Thierry Arnoux, 8-Jun-2025)

Ref Expression
Hypotheses domnmuln0rd.b B = Base R
domnmuln0rd.t · ˙ = R
domnmuln0rd.z 0 ˙ = 0 R
domnmuln0rd.1 φ R Domn
domnmuln0rd.2 φ X B
domnmuln0rd.3 φ Y B
domnmuln0rd.4 φ X · ˙ Y 0 ˙
Assertion domnmuln0rd φ X 0 ˙ Y 0 ˙

Proof

Step Hyp Ref Expression
1 domnmuln0rd.b B = Base R
2 domnmuln0rd.t · ˙ = R
3 domnmuln0rd.z 0 ˙ = 0 R
4 domnmuln0rd.1 φ R Domn
5 domnmuln0rd.2 φ X B
6 domnmuln0rd.3 φ Y B
7 domnmuln0rd.4 φ X · ˙ Y 0 ˙
8 1 2 3 domneq0 R Domn X B Y B X · ˙ Y = 0 ˙ X = 0 ˙ Y = 0 ˙
9 4 5 6 8 syl3anc φ X · ˙ Y = 0 ˙ X = 0 ˙ Y = 0 ˙
10 9 necon3abid φ X · ˙ Y 0 ˙ ¬ X = 0 ˙ Y = 0 ˙
11 7 10 mpbid φ ¬ X = 0 ˙ Y = 0 ˙
12 ioran ¬ X = 0 ˙ Y = 0 ˙ ¬ X = 0 ˙ ¬ Y = 0 ˙
13 11 12 sylib φ ¬ X = 0 ˙ ¬ Y = 0 ˙
14 neqne ¬ X = 0 ˙ X 0 ˙
15 neqne ¬ Y = 0 ˙ Y 0 ˙
16 14 15 anim12i ¬ X = 0 ˙ ¬ Y = 0 ˙ X 0 ˙ Y 0 ˙
17 13 16 syl φ X 0 ˙ Y 0 ˙