Step |
Hyp |
Ref |
Expression |
1 |
|
domnprodn0.1 |
|
2 |
|
domnprodn0.2 |
|
3 |
|
domnprodn0.3 |
|
4 |
|
domnprodn0.4 |
|
5 |
|
domnprodn0.5 |
|
6 |
|
oveq2 |
|
7 |
6
|
neeq1d |
|
8 |
7
|
imbi2d |
|
9 |
|
oveq2 |
|
10 |
9
|
neeq1d |
|
11 |
10
|
imbi2d |
|
12 |
|
oveq2 |
|
13 |
12
|
neeq1d |
|
14 |
13
|
imbi2d |
|
15 |
|
oveq2 |
|
16 |
15
|
neeq1d |
|
17 |
16
|
imbi2d |
|
18 |
|
eqid |
|
19 |
2 18
|
ringidval |
|
20 |
19
|
gsum0 |
|
21 |
20
|
a1i |
|
22 |
|
domnnzr |
|
23 |
18 3
|
nzrnz |
|
24 |
4 22 23
|
3syl |
|
25 |
21 24
|
eqnetrd |
|
26 |
|
domnring |
|
27 |
2
|
ringmgp |
|
28 |
4 26 27
|
3syl |
|
29 |
28
|
ad3antrrr |
|
30 |
|
difssd |
|
31 |
|
sswrd |
|
32 |
30 31
|
syl |
|
33 |
32
|
sselda |
|
34 |
33
|
ad2antrr |
|
35 |
|
simplr |
|
36 |
35
|
eldifad |
|
37 |
2 1
|
mgpbas |
|
38 |
|
eqid |
|
39 |
2 38
|
mgpplusg |
|
40 |
37 39
|
gsumccatsn |
|
41 |
29 34 36 40
|
syl3anc |
|
42 |
4
|
ad3antrrr |
|
43 |
37
|
gsumwcl |
|
44 |
29 34 43
|
syl2anc |
|
45 |
|
simpr |
|
46 |
|
eldifsni |
|
47 |
35 46
|
syl |
|
48 |
1 38 3
|
domnmuln0 |
|
49 |
42 44 45 36 47 48
|
syl122anc |
|
50 |
41 49
|
eqnetrd |
|
51 |
50
|
ex |
|
52 |
51
|
anasss |
|
53 |
52
|
expcom |
|
54 |
53
|
a2d |
|
55 |
8 11 14 17 25 54
|
wrdind |
|
56 |
5 55
|
mpcom |
|