Metamath Proof Explorer


Theorem domnprodn0

Description: In a domain, a finite product of nonzero terms is nonzero. (Contributed by Thierry Arnoux, 6-Jun-2025)

Ref Expression
Hypotheses domnprodn0.1 B = Base R
domnprodn0.2 M = mulGrp R
domnprodn0.3 0 ˙ = 0 R
domnprodn0.4 φ R Domn
domnprodn0.5 φ F Word B 0 ˙
Assertion domnprodn0 φ M F 0 ˙

Proof

Step Hyp Ref Expression
1 domnprodn0.1 B = Base R
2 domnprodn0.2 M = mulGrp R
3 domnprodn0.3 0 ˙ = 0 R
4 domnprodn0.4 φ R Domn
5 domnprodn0.5 φ F Word B 0 ˙
6 oveq2 g = M g = M
7 6 neeq1d g = M g 0 ˙ M 0 ˙
8 7 imbi2d g = φ M g 0 ˙ φ M 0 ˙
9 oveq2 g = f M g = M f
10 9 neeq1d g = f M g 0 ˙ M f 0 ˙
11 10 imbi2d g = f φ M g 0 ˙ φ M f 0 ˙
12 oveq2 g = f ++ ⟨“ x ”⟩ M g = M f ++ ⟨“ x ”⟩
13 12 neeq1d g = f ++ ⟨“ x ”⟩ M g 0 ˙ M f ++ ⟨“ x ”⟩ 0 ˙
14 13 imbi2d g = f ++ ⟨“ x ”⟩ φ M g 0 ˙ φ M f ++ ⟨“ x ”⟩ 0 ˙
15 oveq2 g = F M g = M F
16 15 neeq1d g = F M g 0 ˙ M F 0 ˙
17 16 imbi2d g = F φ M g 0 ˙ φ M F 0 ˙
18 eqid 1 R = 1 R
19 2 18 ringidval 1 R = 0 M
20 19 gsum0 M = 1 R
21 20 a1i φ M = 1 R
22 domnnzr R Domn R NzRing
23 18 3 nzrnz R NzRing 1 R 0 ˙
24 4 22 23 3syl φ 1 R 0 ˙
25 21 24 eqnetrd φ M 0 ˙
26 domnring R Domn R Ring
27 2 ringmgp R Ring M Mnd
28 4 26 27 3syl φ M Mnd
29 28 ad3antrrr φ f Word B 0 ˙ x B 0 ˙ M f 0 ˙ M Mnd
30 difssd φ B 0 ˙ B
31 sswrd B 0 ˙ B Word B 0 ˙ Word B
32 30 31 syl φ Word B 0 ˙ Word B
33 32 sselda φ f Word B 0 ˙ f Word B
34 33 ad2antrr φ f Word B 0 ˙ x B 0 ˙ M f 0 ˙ f Word B
35 simplr φ f Word B 0 ˙ x B 0 ˙ M f 0 ˙ x B 0 ˙
36 35 eldifad φ f Word B 0 ˙ x B 0 ˙ M f 0 ˙ x B
37 2 1 mgpbas B = Base M
38 eqid R = R
39 2 38 mgpplusg R = + M
40 37 39 gsumccatsn M Mnd f Word B x B M f ++ ⟨“ x ”⟩ = M f R x
41 29 34 36 40 syl3anc φ f Word B 0 ˙ x B 0 ˙ M f 0 ˙ M f ++ ⟨“ x ”⟩ = M f R x
42 4 ad3antrrr φ f Word B 0 ˙ x B 0 ˙ M f 0 ˙ R Domn
43 37 gsumwcl M Mnd f Word B M f B
44 29 34 43 syl2anc φ f Word B 0 ˙ x B 0 ˙ M f 0 ˙ M f B
45 simpr φ f Word B 0 ˙ x B 0 ˙ M f 0 ˙ M f 0 ˙
46 eldifsni x B 0 ˙ x 0 ˙
47 35 46 syl φ f Word B 0 ˙ x B 0 ˙ M f 0 ˙ x 0 ˙
48 1 38 3 domnmuln0 R Domn M f B M f 0 ˙ x B x 0 ˙ M f R x 0 ˙
49 42 44 45 36 47 48 syl122anc φ f Word B 0 ˙ x B 0 ˙ M f 0 ˙ M f R x 0 ˙
50 41 49 eqnetrd φ f Word B 0 ˙ x B 0 ˙ M f 0 ˙ M f ++ ⟨“ x ”⟩ 0 ˙
51 50 ex φ f Word B 0 ˙ x B 0 ˙ M f 0 ˙ M f ++ ⟨“ x ”⟩ 0 ˙
52 51 anasss φ f Word B 0 ˙ x B 0 ˙ M f 0 ˙ M f ++ ⟨“ x ”⟩ 0 ˙
53 52 expcom f Word B 0 ˙ x B 0 ˙ φ M f 0 ˙ M f ++ ⟨“ x ”⟩ 0 ˙
54 53 a2d f Word B 0 ˙ x B 0 ˙ φ M f 0 ˙ φ M f ++ ⟨“ x ”⟩ 0 ˙
55 8 11 14 17 25 54 wrdind F Word B 0 ˙ φ M F 0 ˙
56 5 55 mpcom φ M F 0 ˙