| Step |
Hyp |
Ref |
Expression |
| 1 |
|
domnprodn0.1 |
|
| 2 |
|
domnprodn0.2 |
|
| 3 |
|
domnprodn0.3 |
|
| 4 |
|
domnprodn0.4 |
|
| 5 |
|
domnprodn0.5 |
|
| 6 |
|
oveq2 |
|
| 7 |
6
|
neeq1d |
|
| 8 |
7
|
imbi2d |
|
| 9 |
|
oveq2 |
|
| 10 |
9
|
neeq1d |
|
| 11 |
10
|
imbi2d |
|
| 12 |
|
oveq2 |
|
| 13 |
12
|
neeq1d |
|
| 14 |
13
|
imbi2d |
|
| 15 |
|
oveq2 |
|
| 16 |
15
|
neeq1d |
|
| 17 |
16
|
imbi2d |
|
| 18 |
|
eqid |
|
| 19 |
2 18
|
ringidval |
|
| 20 |
19
|
gsum0 |
|
| 21 |
20
|
a1i |
|
| 22 |
|
domnnzr |
|
| 23 |
18 3
|
nzrnz |
|
| 24 |
4 22 23
|
3syl |
|
| 25 |
21 24
|
eqnetrd |
|
| 26 |
|
domnring |
|
| 27 |
2
|
ringmgp |
|
| 28 |
4 26 27
|
3syl |
|
| 29 |
28
|
ad3antrrr |
|
| 30 |
|
difssd |
|
| 31 |
|
sswrd |
|
| 32 |
30 31
|
syl |
|
| 33 |
32
|
sselda |
|
| 34 |
33
|
ad2antrr |
|
| 35 |
|
simplr |
|
| 36 |
35
|
eldifad |
|
| 37 |
2 1
|
mgpbas |
|
| 38 |
|
eqid |
|
| 39 |
2 38
|
mgpplusg |
|
| 40 |
37 39
|
gsumccatsn |
|
| 41 |
29 34 36 40
|
syl3anc |
|
| 42 |
4
|
ad3antrrr |
|
| 43 |
37
|
gsumwcl |
|
| 44 |
29 34 43
|
syl2anc |
|
| 45 |
|
simpr |
|
| 46 |
|
eldifsni |
|
| 47 |
35 46
|
syl |
|
| 48 |
1 38 3
|
domnmuln0 |
|
| 49 |
42 44 45 36 47 48
|
syl122anc |
|
| 50 |
41 49
|
eqnetrd |
|
| 51 |
50
|
ex |
|
| 52 |
51
|
anasss |
|
| 53 |
52
|
expcom |
|
| 54 |
53
|
a2d |
|
| 55 |
8 11 14 17 25 54
|
wrdind |
|
| 56 |
5 55
|
mpcom |
|