| Step |
Hyp |
Ref |
Expression |
| 1 |
|
domnprodn0.1 |
|- B = ( Base ` R ) |
| 2 |
|
domnprodn0.2 |
|- M = ( mulGrp ` R ) |
| 3 |
|
domnprodn0.3 |
|- .0. = ( 0g ` R ) |
| 4 |
|
domnprodn0.4 |
|- ( ph -> R e. Domn ) |
| 5 |
|
domnprodn0.5 |
|- ( ph -> F e. Word ( B \ { .0. } ) ) |
| 6 |
|
oveq2 |
|- ( g = (/) -> ( M gsum g ) = ( M gsum (/) ) ) |
| 7 |
6
|
neeq1d |
|- ( g = (/) -> ( ( M gsum g ) =/= .0. <-> ( M gsum (/) ) =/= .0. ) ) |
| 8 |
7
|
imbi2d |
|- ( g = (/) -> ( ( ph -> ( M gsum g ) =/= .0. ) <-> ( ph -> ( M gsum (/) ) =/= .0. ) ) ) |
| 9 |
|
oveq2 |
|- ( g = f -> ( M gsum g ) = ( M gsum f ) ) |
| 10 |
9
|
neeq1d |
|- ( g = f -> ( ( M gsum g ) =/= .0. <-> ( M gsum f ) =/= .0. ) ) |
| 11 |
10
|
imbi2d |
|- ( g = f -> ( ( ph -> ( M gsum g ) =/= .0. ) <-> ( ph -> ( M gsum f ) =/= .0. ) ) ) |
| 12 |
|
oveq2 |
|- ( g = ( f ++ <" x "> ) -> ( M gsum g ) = ( M gsum ( f ++ <" x "> ) ) ) |
| 13 |
12
|
neeq1d |
|- ( g = ( f ++ <" x "> ) -> ( ( M gsum g ) =/= .0. <-> ( M gsum ( f ++ <" x "> ) ) =/= .0. ) ) |
| 14 |
13
|
imbi2d |
|- ( g = ( f ++ <" x "> ) -> ( ( ph -> ( M gsum g ) =/= .0. ) <-> ( ph -> ( M gsum ( f ++ <" x "> ) ) =/= .0. ) ) ) |
| 15 |
|
oveq2 |
|- ( g = F -> ( M gsum g ) = ( M gsum F ) ) |
| 16 |
15
|
neeq1d |
|- ( g = F -> ( ( M gsum g ) =/= .0. <-> ( M gsum F ) =/= .0. ) ) |
| 17 |
16
|
imbi2d |
|- ( g = F -> ( ( ph -> ( M gsum g ) =/= .0. ) <-> ( ph -> ( M gsum F ) =/= .0. ) ) ) |
| 18 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 19 |
2 18
|
ringidval |
|- ( 1r ` R ) = ( 0g ` M ) |
| 20 |
19
|
gsum0 |
|- ( M gsum (/) ) = ( 1r ` R ) |
| 21 |
20
|
a1i |
|- ( ph -> ( M gsum (/) ) = ( 1r ` R ) ) |
| 22 |
|
domnnzr |
|- ( R e. Domn -> R e. NzRing ) |
| 23 |
18 3
|
nzrnz |
|- ( R e. NzRing -> ( 1r ` R ) =/= .0. ) |
| 24 |
4 22 23
|
3syl |
|- ( ph -> ( 1r ` R ) =/= .0. ) |
| 25 |
21 24
|
eqnetrd |
|- ( ph -> ( M gsum (/) ) =/= .0. ) |
| 26 |
|
domnring |
|- ( R e. Domn -> R e. Ring ) |
| 27 |
2
|
ringmgp |
|- ( R e. Ring -> M e. Mnd ) |
| 28 |
4 26 27
|
3syl |
|- ( ph -> M e. Mnd ) |
| 29 |
28
|
ad3antrrr |
|- ( ( ( ( ph /\ f e. Word ( B \ { .0. } ) ) /\ x e. ( B \ { .0. } ) ) /\ ( M gsum f ) =/= .0. ) -> M e. Mnd ) |
| 30 |
|
difssd |
|- ( ph -> ( B \ { .0. } ) C_ B ) |
| 31 |
|
sswrd |
|- ( ( B \ { .0. } ) C_ B -> Word ( B \ { .0. } ) C_ Word B ) |
| 32 |
30 31
|
syl |
|- ( ph -> Word ( B \ { .0. } ) C_ Word B ) |
| 33 |
32
|
sselda |
|- ( ( ph /\ f e. Word ( B \ { .0. } ) ) -> f e. Word B ) |
| 34 |
33
|
ad2antrr |
|- ( ( ( ( ph /\ f e. Word ( B \ { .0. } ) ) /\ x e. ( B \ { .0. } ) ) /\ ( M gsum f ) =/= .0. ) -> f e. Word B ) |
| 35 |
|
simplr |
|- ( ( ( ( ph /\ f e. Word ( B \ { .0. } ) ) /\ x e. ( B \ { .0. } ) ) /\ ( M gsum f ) =/= .0. ) -> x e. ( B \ { .0. } ) ) |
| 36 |
35
|
eldifad |
|- ( ( ( ( ph /\ f e. Word ( B \ { .0. } ) ) /\ x e. ( B \ { .0. } ) ) /\ ( M gsum f ) =/= .0. ) -> x e. B ) |
| 37 |
2 1
|
mgpbas |
|- B = ( Base ` M ) |
| 38 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 39 |
2 38
|
mgpplusg |
|- ( .r ` R ) = ( +g ` M ) |
| 40 |
37 39
|
gsumccatsn |
|- ( ( M e. Mnd /\ f e. Word B /\ x e. B ) -> ( M gsum ( f ++ <" x "> ) ) = ( ( M gsum f ) ( .r ` R ) x ) ) |
| 41 |
29 34 36 40
|
syl3anc |
|- ( ( ( ( ph /\ f e. Word ( B \ { .0. } ) ) /\ x e. ( B \ { .0. } ) ) /\ ( M gsum f ) =/= .0. ) -> ( M gsum ( f ++ <" x "> ) ) = ( ( M gsum f ) ( .r ` R ) x ) ) |
| 42 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ f e. Word ( B \ { .0. } ) ) /\ x e. ( B \ { .0. } ) ) /\ ( M gsum f ) =/= .0. ) -> R e. Domn ) |
| 43 |
37
|
gsumwcl |
|- ( ( M e. Mnd /\ f e. Word B ) -> ( M gsum f ) e. B ) |
| 44 |
29 34 43
|
syl2anc |
|- ( ( ( ( ph /\ f e. Word ( B \ { .0. } ) ) /\ x e. ( B \ { .0. } ) ) /\ ( M gsum f ) =/= .0. ) -> ( M gsum f ) e. B ) |
| 45 |
|
simpr |
|- ( ( ( ( ph /\ f e. Word ( B \ { .0. } ) ) /\ x e. ( B \ { .0. } ) ) /\ ( M gsum f ) =/= .0. ) -> ( M gsum f ) =/= .0. ) |
| 46 |
|
eldifsni |
|- ( x e. ( B \ { .0. } ) -> x =/= .0. ) |
| 47 |
35 46
|
syl |
|- ( ( ( ( ph /\ f e. Word ( B \ { .0. } ) ) /\ x e. ( B \ { .0. } ) ) /\ ( M gsum f ) =/= .0. ) -> x =/= .0. ) |
| 48 |
1 38 3
|
domnmuln0 |
|- ( ( R e. Domn /\ ( ( M gsum f ) e. B /\ ( M gsum f ) =/= .0. ) /\ ( x e. B /\ x =/= .0. ) ) -> ( ( M gsum f ) ( .r ` R ) x ) =/= .0. ) |
| 49 |
42 44 45 36 47 48
|
syl122anc |
|- ( ( ( ( ph /\ f e. Word ( B \ { .0. } ) ) /\ x e. ( B \ { .0. } ) ) /\ ( M gsum f ) =/= .0. ) -> ( ( M gsum f ) ( .r ` R ) x ) =/= .0. ) |
| 50 |
41 49
|
eqnetrd |
|- ( ( ( ( ph /\ f e. Word ( B \ { .0. } ) ) /\ x e. ( B \ { .0. } ) ) /\ ( M gsum f ) =/= .0. ) -> ( M gsum ( f ++ <" x "> ) ) =/= .0. ) |
| 51 |
50
|
ex |
|- ( ( ( ph /\ f e. Word ( B \ { .0. } ) ) /\ x e. ( B \ { .0. } ) ) -> ( ( M gsum f ) =/= .0. -> ( M gsum ( f ++ <" x "> ) ) =/= .0. ) ) |
| 52 |
51
|
anasss |
|- ( ( ph /\ ( f e. Word ( B \ { .0. } ) /\ x e. ( B \ { .0. } ) ) ) -> ( ( M gsum f ) =/= .0. -> ( M gsum ( f ++ <" x "> ) ) =/= .0. ) ) |
| 53 |
52
|
expcom |
|- ( ( f e. Word ( B \ { .0. } ) /\ x e. ( B \ { .0. } ) ) -> ( ph -> ( ( M gsum f ) =/= .0. -> ( M gsum ( f ++ <" x "> ) ) =/= .0. ) ) ) |
| 54 |
53
|
a2d |
|- ( ( f e. Word ( B \ { .0. } ) /\ x e. ( B \ { .0. } ) ) -> ( ( ph -> ( M gsum f ) =/= .0. ) -> ( ph -> ( M gsum ( f ++ <" x "> ) ) =/= .0. ) ) ) |
| 55 |
8 11 14 17 25 54
|
wrdind |
|- ( F e. Word ( B \ { .0. } ) -> ( ph -> ( M gsum F ) =/= .0. ) ) |
| 56 |
5 55
|
mpcom |
|- ( ph -> ( M gsum F ) =/= .0. ) |