| Step |
Hyp |
Ref |
Expression |
| 1 |
|
domnpropd.1 |
|- ( ph -> B = ( Base ` K ) ) |
| 2 |
|
domnpropd.2 |
|- ( ph -> B = ( Base ` L ) ) |
| 3 |
|
domnpropd.3 |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
| 4 |
|
domnpropd.4 |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
| 5 |
1 2 3 4
|
nzrpropd |
|- ( ph -> ( K e. NzRing <-> L e. NzRing ) ) |
| 6 |
1 2
|
eqtr3d |
|- ( ph -> ( Base ` K ) = ( Base ` L ) ) |
| 7 |
6
|
adantr |
|- ( ( ph /\ x e. ( Base ` K ) ) -> ( Base ` K ) = ( Base ` L ) ) |
| 8 |
|
simpll |
|- ( ( ( ph /\ x e. ( Base ` K ) ) /\ y e. ( Base ` K ) ) -> ph ) |
| 9 |
1
|
eleq2d |
|- ( ph -> ( x e. B <-> x e. ( Base ` K ) ) ) |
| 10 |
9
|
biimpar |
|- ( ( ph /\ x e. ( Base ` K ) ) -> x e. B ) |
| 11 |
10
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` K ) ) /\ y e. ( Base ` K ) ) -> x e. B ) |
| 12 |
1
|
eleq2d |
|- ( ph -> ( y e. B <-> y e. ( Base ` K ) ) ) |
| 13 |
12
|
biimpar |
|- ( ( ph /\ y e. ( Base ` K ) ) -> y e. B ) |
| 14 |
13
|
adantlr |
|- ( ( ( ph /\ x e. ( Base ` K ) ) /\ y e. ( Base ` K ) ) -> y e. B ) |
| 15 |
8 11 14 4
|
syl12anc |
|- ( ( ( ph /\ x e. ( Base ` K ) ) /\ y e. ( Base ` K ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
| 16 |
1 2 3
|
grpidpropd |
|- ( ph -> ( 0g ` K ) = ( 0g ` L ) ) |
| 17 |
16
|
ad2antrr |
|- ( ( ( ph /\ x e. ( Base ` K ) ) /\ y e. ( Base ` K ) ) -> ( 0g ` K ) = ( 0g ` L ) ) |
| 18 |
15 17
|
eqeq12d |
|- ( ( ( ph /\ x e. ( Base ` K ) ) /\ y e. ( Base ` K ) ) -> ( ( x ( .r ` K ) y ) = ( 0g ` K ) <-> ( x ( .r ` L ) y ) = ( 0g ` L ) ) ) |
| 19 |
17
|
eqeq2d |
|- ( ( ( ph /\ x e. ( Base ` K ) ) /\ y e. ( Base ` K ) ) -> ( x = ( 0g ` K ) <-> x = ( 0g ` L ) ) ) |
| 20 |
17
|
eqeq2d |
|- ( ( ( ph /\ x e. ( Base ` K ) ) /\ y e. ( Base ` K ) ) -> ( y = ( 0g ` K ) <-> y = ( 0g ` L ) ) ) |
| 21 |
19 20
|
orbi12d |
|- ( ( ( ph /\ x e. ( Base ` K ) ) /\ y e. ( Base ` K ) ) -> ( ( x = ( 0g ` K ) \/ y = ( 0g ` K ) ) <-> ( x = ( 0g ` L ) \/ y = ( 0g ` L ) ) ) ) |
| 22 |
18 21
|
imbi12d |
|- ( ( ( ph /\ x e. ( Base ` K ) ) /\ y e. ( Base ` K ) ) -> ( ( ( x ( .r ` K ) y ) = ( 0g ` K ) -> ( x = ( 0g ` K ) \/ y = ( 0g ` K ) ) ) <-> ( ( x ( .r ` L ) y ) = ( 0g ` L ) -> ( x = ( 0g ` L ) \/ y = ( 0g ` L ) ) ) ) ) |
| 23 |
7 22
|
raleqbidva |
|- ( ( ph /\ x e. ( Base ` K ) ) -> ( A. y e. ( Base ` K ) ( ( x ( .r ` K ) y ) = ( 0g ` K ) -> ( x = ( 0g ` K ) \/ y = ( 0g ` K ) ) ) <-> A. y e. ( Base ` L ) ( ( x ( .r ` L ) y ) = ( 0g ` L ) -> ( x = ( 0g ` L ) \/ y = ( 0g ` L ) ) ) ) ) |
| 24 |
6 23
|
raleqbidva |
|- ( ph -> ( A. x e. ( Base ` K ) A. y e. ( Base ` K ) ( ( x ( .r ` K ) y ) = ( 0g ` K ) -> ( x = ( 0g ` K ) \/ y = ( 0g ` K ) ) ) <-> A. x e. ( Base ` L ) A. y e. ( Base ` L ) ( ( x ( .r ` L ) y ) = ( 0g ` L ) -> ( x = ( 0g ` L ) \/ y = ( 0g ` L ) ) ) ) ) |
| 25 |
5 24
|
anbi12d |
|- ( ph -> ( ( K e. NzRing /\ A. x e. ( Base ` K ) A. y e. ( Base ` K ) ( ( x ( .r ` K ) y ) = ( 0g ` K ) -> ( x = ( 0g ` K ) \/ y = ( 0g ` K ) ) ) ) <-> ( L e. NzRing /\ A. x e. ( Base ` L ) A. y e. ( Base ` L ) ( ( x ( .r ` L ) y ) = ( 0g ` L ) -> ( x = ( 0g ` L ) \/ y = ( 0g ` L ) ) ) ) ) ) |
| 26 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 27 |
|
eqid |
|- ( .r ` K ) = ( .r ` K ) |
| 28 |
|
eqid |
|- ( 0g ` K ) = ( 0g ` K ) |
| 29 |
26 27 28
|
isdomn |
|- ( K e. Domn <-> ( K e. NzRing /\ A. x e. ( Base ` K ) A. y e. ( Base ` K ) ( ( x ( .r ` K ) y ) = ( 0g ` K ) -> ( x = ( 0g ` K ) \/ y = ( 0g ` K ) ) ) ) ) |
| 30 |
|
eqid |
|- ( Base ` L ) = ( Base ` L ) |
| 31 |
|
eqid |
|- ( .r ` L ) = ( .r ` L ) |
| 32 |
|
eqid |
|- ( 0g ` L ) = ( 0g ` L ) |
| 33 |
30 31 32
|
isdomn |
|- ( L e. Domn <-> ( L e. NzRing /\ A. x e. ( Base ` L ) A. y e. ( Base ` L ) ( ( x ( .r ` L ) y ) = ( 0g ` L ) -> ( x = ( 0g ` L ) \/ y = ( 0g ` L ) ) ) ) ) |
| 34 |
25 29 33
|
3bitr4g |
|- ( ph -> ( K e. Domn <-> L e. Domn ) ) |