| Step |
Hyp |
Ref |
Expression |
| 1 |
|
domnpropd.1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
| 2 |
|
domnpropd.2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
| 3 |
|
domnpropd.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
| 4 |
|
domnpropd.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) |
| 5 |
1 2 3 4
|
nzrpropd |
⊢ ( 𝜑 → ( 𝐾 ∈ NzRing ↔ 𝐿 ∈ NzRing ) ) |
| 6 |
1 2
|
eqtr3d |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) |
| 8 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → 𝜑 ) |
| 9 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( Base ‘ 𝐾 ) ) ) |
| 10 |
9
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → 𝑥 ∈ 𝐵 ) |
| 11 |
10
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → 𝑥 ∈ 𝐵 ) |
| 12 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) |
| 13 |
12
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → 𝑦 ∈ 𝐵 ) |
| 14 |
13
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → 𝑦 ∈ 𝐵 ) |
| 15 |
8 11 14 4
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) |
| 16 |
1 2 3
|
grpidpropd |
⊢ ( 𝜑 → ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐿 ) ) |
| 17 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐿 ) ) |
| 18 |
15 17
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ↔ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) |
| 19 |
17
|
eqeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑥 = ( 0g ‘ 𝐾 ) ↔ 𝑥 = ( 0g ‘ 𝐿 ) ) ) |
| 20 |
17
|
eqeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑦 = ( 0g ‘ 𝐾 ) ↔ 𝑦 = ( 0g ‘ 𝐿 ) ) ) |
| 21 |
19 20
|
orbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑥 = ( 0g ‘ 𝐾 ) ∨ 𝑦 = ( 0g ‘ 𝐾 ) ) ↔ ( 𝑥 = ( 0g ‘ 𝐿 ) ∨ 𝑦 = ( 0g ‘ 𝐿 ) ) ) ) |
| 22 |
18 21
|
imbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( ( ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) → ( 𝑥 = ( 0g ‘ 𝐾 ) ∨ 𝑦 = ( 0g ‘ 𝐾 ) ) ) ↔ ( ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) → ( 𝑥 = ( 0g ‘ 𝐿 ) ∨ 𝑦 = ( 0g ‘ 𝐿 ) ) ) ) ) |
| 23 |
7 22
|
raleqbidva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) → ( 𝑥 = ( 0g ‘ 𝐾 ) ∨ 𝑦 = ( 0g ‘ 𝐾 ) ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) → ( 𝑥 = ( 0g ‘ 𝐿 ) ∨ 𝑦 = ( 0g ‘ 𝐿 ) ) ) ) ) |
| 24 |
6 23
|
raleqbidva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) → ( 𝑥 = ( 0g ‘ 𝐾 ) ∨ 𝑦 = ( 0g ‘ 𝐾 ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) → ( 𝑥 = ( 0g ‘ 𝐿 ) ∨ 𝑦 = ( 0g ‘ 𝐿 ) ) ) ) ) |
| 25 |
5 24
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝐾 ∈ NzRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) → ( 𝑥 = ( 0g ‘ 𝐾 ) ∨ 𝑦 = ( 0g ‘ 𝐾 ) ) ) ) ↔ ( 𝐿 ∈ NzRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) → ( 𝑥 = ( 0g ‘ 𝐿 ) ∨ 𝑦 = ( 0g ‘ 𝐿 ) ) ) ) ) ) |
| 26 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 27 |
|
eqid |
⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐾 ) |
| 28 |
|
eqid |
⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) |
| 29 |
26 27 28
|
isdomn |
⊢ ( 𝐾 ∈ Domn ↔ ( 𝐾 ∈ NzRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) → ( 𝑥 = ( 0g ‘ 𝐾 ) ∨ 𝑦 = ( 0g ‘ 𝐾 ) ) ) ) ) |
| 30 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
| 31 |
|
eqid |
⊢ ( .r ‘ 𝐿 ) = ( .r ‘ 𝐿 ) |
| 32 |
|
eqid |
⊢ ( 0g ‘ 𝐿 ) = ( 0g ‘ 𝐿 ) |
| 33 |
30 31 32
|
isdomn |
⊢ ( 𝐿 ∈ Domn ↔ ( 𝐿 ∈ NzRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) → ( 𝑥 = ( 0g ‘ 𝐿 ) ∨ 𝑦 = ( 0g ‘ 𝐿 ) ) ) ) ) |
| 34 |
25 29 33
|
3bitr4g |
⊢ ( 𝜑 → ( 𝐾 ∈ Domn ↔ 𝐿 ∈ Domn ) ) |