Metamath Proof Explorer


Theorem domnpropd

Description: If two structures have the same components (properties), one is a domain iff the other one is. (Contributed by Thierry Arnoux, 13-Oct-2025)

Ref Expression
Hypotheses domnpropd.1 ( 𝜑𝐵 = ( Base ‘ 𝐾 ) )
domnpropd.2 ( 𝜑𝐵 = ( Base ‘ 𝐿 ) )
domnpropd.3 ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 𝑥 ( +g𝐿 ) 𝑦 ) )
domnpropd.4 ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( .r𝐾 ) 𝑦 ) = ( 𝑥 ( .r𝐿 ) 𝑦 ) )
Assertion domnpropd ( 𝜑 → ( 𝐾 ∈ Domn ↔ 𝐿 ∈ Domn ) )

Proof

Step Hyp Ref Expression
1 domnpropd.1 ( 𝜑𝐵 = ( Base ‘ 𝐾 ) )
2 domnpropd.2 ( 𝜑𝐵 = ( Base ‘ 𝐿 ) )
3 domnpropd.3 ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 𝑥 ( +g𝐿 ) 𝑦 ) )
4 domnpropd.4 ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( .r𝐾 ) 𝑦 ) = ( 𝑥 ( .r𝐿 ) 𝑦 ) )
5 1 2 3 4 nzrpropd ( 𝜑 → ( 𝐾 ∈ NzRing ↔ 𝐿 ∈ NzRing ) )
6 1 2 eqtr3d ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) )
7 6 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) )
8 simpll ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → 𝜑 )
9 1 eleq2d ( 𝜑 → ( 𝑥𝐵𝑥 ∈ ( Base ‘ 𝐾 ) ) )
10 9 biimpar ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐾 ) ) → 𝑥𝐵 )
11 10 adantr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → 𝑥𝐵 )
12 1 eleq2d ( 𝜑 → ( 𝑦𝐵𝑦 ∈ ( Base ‘ 𝐾 ) ) )
13 12 biimpar ( ( 𝜑𝑦 ∈ ( Base ‘ 𝐾 ) ) → 𝑦𝐵 )
14 13 adantlr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → 𝑦𝐵 )
15 8 11 14 4 syl12anc ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑥 ( .r𝐾 ) 𝑦 ) = ( 𝑥 ( .r𝐿 ) 𝑦 ) )
16 1 2 3 grpidpropd ( 𝜑 → ( 0g𝐾 ) = ( 0g𝐿 ) )
17 16 ad2antrr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( 0g𝐾 ) = ( 0g𝐿 ) )
18 15 17 eqeq12d ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑥 ( .r𝐾 ) 𝑦 ) = ( 0g𝐾 ) ↔ ( 𝑥 ( .r𝐿 ) 𝑦 ) = ( 0g𝐿 ) ) )
19 17 eqeq2d ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑥 = ( 0g𝐾 ) ↔ 𝑥 = ( 0g𝐿 ) ) )
20 17 eqeq2d ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑦 = ( 0g𝐾 ) ↔ 𝑦 = ( 0g𝐿 ) ) )
21 19 20 orbi12d ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑥 = ( 0g𝐾 ) ∨ 𝑦 = ( 0g𝐾 ) ) ↔ ( 𝑥 = ( 0g𝐿 ) ∨ 𝑦 = ( 0g𝐿 ) ) ) )
22 18 21 imbi12d ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( ( ( 𝑥 ( .r𝐾 ) 𝑦 ) = ( 0g𝐾 ) → ( 𝑥 = ( 0g𝐾 ) ∨ 𝑦 = ( 0g𝐾 ) ) ) ↔ ( ( 𝑥 ( .r𝐿 ) 𝑦 ) = ( 0g𝐿 ) → ( 𝑥 = ( 0g𝐿 ) ∨ 𝑦 = ( 0g𝐿 ) ) ) ) )
23 7 22 raleqbidva ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( .r𝐾 ) 𝑦 ) = ( 0g𝐾 ) → ( 𝑥 = ( 0g𝐾 ) ∨ 𝑦 = ( 0g𝐾 ) ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( ( 𝑥 ( .r𝐿 ) 𝑦 ) = ( 0g𝐿 ) → ( 𝑥 = ( 0g𝐿 ) ∨ 𝑦 = ( 0g𝐿 ) ) ) ) )
24 6 23 raleqbidva ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( .r𝐾 ) 𝑦 ) = ( 0g𝐾 ) → ( 𝑥 = ( 0g𝐾 ) ∨ 𝑦 = ( 0g𝐾 ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( ( 𝑥 ( .r𝐿 ) 𝑦 ) = ( 0g𝐿 ) → ( 𝑥 = ( 0g𝐿 ) ∨ 𝑦 = ( 0g𝐿 ) ) ) ) )
25 5 24 anbi12d ( 𝜑 → ( ( 𝐾 ∈ NzRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( .r𝐾 ) 𝑦 ) = ( 0g𝐾 ) → ( 𝑥 = ( 0g𝐾 ) ∨ 𝑦 = ( 0g𝐾 ) ) ) ) ↔ ( 𝐿 ∈ NzRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( ( 𝑥 ( .r𝐿 ) 𝑦 ) = ( 0g𝐿 ) → ( 𝑥 = ( 0g𝐿 ) ∨ 𝑦 = ( 0g𝐿 ) ) ) ) ) )
26 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
27 eqid ( .r𝐾 ) = ( .r𝐾 )
28 eqid ( 0g𝐾 ) = ( 0g𝐾 )
29 26 27 28 isdomn ( 𝐾 ∈ Domn ↔ ( 𝐾 ∈ NzRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( 𝑥 ( .r𝐾 ) 𝑦 ) = ( 0g𝐾 ) → ( 𝑥 = ( 0g𝐾 ) ∨ 𝑦 = ( 0g𝐾 ) ) ) ) )
30 eqid ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 )
31 eqid ( .r𝐿 ) = ( .r𝐿 )
32 eqid ( 0g𝐿 ) = ( 0g𝐿 )
33 30 31 32 isdomn ( 𝐿 ∈ Domn ↔ ( 𝐿 ∈ NzRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ∀ 𝑦 ∈ ( Base ‘ 𝐿 ) ( ( 𝑥 ( .r𝐿 ) 𝑦 ) = ( 0g𝐿 ) → ( 𝑥 = ( 0g𝐿 ) ∨ 𝑦 = ( 0g𝐿 ) ) ) ) )
34 25 29 33 3bitr4g ( 𝜑 → ( 𝐾 ∈ Domn ↔ 𝐿 ∈ Domn ) )