| Step |
Hyp |
Ref |
Expression |
| 1 |
|
domnpropd.1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
| 2 |
|
domnpropd.2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
| 3 |
|
domnpropd.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
| 4 |
|
domnpropd.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) |
| 5 |
1 2 3 4
|
crngpropd |
⊢ ( 𝜑 → ( 𝐾 ∈ CRing ↔ 𝐿 ∈ CRing ) ) |
| 6 |
1 2 3 4
|
domnpropd |
⊢ ( 𝜑 → ( 𝐾 ∈ Domn ↔ 𝐿 ∈ Domn ) ) |
| 7 |
5 6
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝐾 ∈ CRing ∧ 𝐾 ∈ Domn ) ↔ ( 𝐿 ∈ CRing ∧ 𝐿 ∈ Domn ) ) ) |
| 8 |
|
isidom |
⊢ ( 𝐾 ∈ IDomn ↔ ( 𝐾 ∈ CRing ∧ 𝐾 ∈ Domn ) ) |
| 9 |
|
isidom |
⊢ ( 𝐿 ∈ IDomn ↔ ( 𝐿 ∈ CRing ∧ 𝐿 ∈ Domn ) ) |
| 10 |
7 8 9
|
3bitr4g |
⊢ ( 𝜑 → ( 𝐾 ∈ IDomn ↔ 𝐿 ∈ IDomn ) ) |