| Step |
Hyp |
Ref |
Expression |
| 1 |
|
domnpropd.1 |
|- ( ph -> B = ( Base ` K ) ) |
| 2 |
|
domnpropd.2 |
|- ( ph -> B = ( Base ` L ) ) |
| 3 |
|
domnpropd.3 |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
| 4 |
|
domnpropd.4 |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
| 5 |
1 2 3 4
|
crngpropd |
|- ( ph -> ( K e. CRing <-> L e. CRing ) ) |
| 6 |
1 2 3 4
|
domnpropd |
|- ( ph -> ( K e. Domn <-> L e. Domn ) ) |
| 7 |
5 6
|
anbi12d |
|- ( ph -> ( ( K e. CRing /\ K e. Domn ) <-> ( L e. CRing /\ L e. Domn ) ) ) |
| 8 |
|
isidom |
|- ( K e. IDomn <-> ( K e. CRing /\ K e. Domn ) ) |
| 9 |
|
isidom |
|- ( L e. IDomn <-> ( L e. CRing /\ L e. Domn ) ) |
| 10 |
7 8 9
|
3bitr4g |
|- ( ph -> ( K e. IDomn <-> L e. IDomn ) ) |