Metamath Proof Explorer


Theorem domnpropd

Description: If two structures have the same components (properties), one is a domain iff the other one is. (Contributed by Thierry Arnoux, 13-Oct-2025)

Ref Expression
Hypotheses domnpropd.1 φ B = Base K
domnpropd.2 φ B = Base L
domnpropd.3 φ x B y B x + K y = x + L y
domnpropd.4 φ x B y B x K y = x L y
Assertion domnpropd φ K Domn L Domn

Proof

Step Hyp Ref Expression
1 domnpropd.1 φ B = Base K
2 domnpropd.2 φ B = Base L
3 domnpropd.3 φ x B y B x + K y = x + L y
4 domnpropd.4 φ x B y B x K y = x L y
5 1 2 3 4 nzrpropd φ K NzRing L NzRing
6 1 2 eqtr3d φ Base K = Base L
7 6 adantr φ x Base K Base K = Base L
8 simpll φ x Base K y Base K φ
9 1 eleq2d φ x B x Base K
10 9 biimpar φ x Base K x B
11 10 adantr φ x Base K y Base K x B
12 1 eleq2d φ y B y Base K
13 12 biimpar φ y Base K y B
14 13 adantlr φ x Base K y Base K y B
15 8 11 14 4 syl12anc φ x Base K y Base K x K y = x L y
16 1 2 3 grpidpropd φ 0 K = 0 L
17 16 ad2antrr φ x Base K y Base K 0 K = 0 L
18 15 17 eqeq12d φ x Base K y Base K x K y = 0 K x L y = 0 L
19 17 eqeq2d φ x Base K y Base K x = 0 K x = 0 L
20 17 eqeq2d φ x Base K y Base K y = 0 K y = 0 L
21 19 20 orbi12d φ x Base K y Base K x = 0 K y = 0 K x = 0 L y = 0 L
22 18 21 imbi12d φ x Base K y Base K x K y = 0 K x = 0 K y = 0 K x L y = 0 L x = 0 L y = 0 L
23 7 22 raleqbidva φ x Base K y Base K x K y = 0 K x = 0 K y = 0 K y Base L x L y = 0 L x = 0 L y = 0 L
24 6 23 raleqbidva φ x Base K y Base K x K y = 0 K x = 0 K y = 0 K x Base L y Base L x L y = 0 L x = 0 L y = 0 L
25 5 24 anbi12d φ K NzRing x Base K y Base K x K y = 0 K x = 0 K y = 0 K L NzRing x Base L y Base L x L y = 0 L x = 0 L y = 0 L
26 eqid Base K = Base K
27 eqid K = K
28 eqid 0 K = 0 K
29 26 27 28 isdomn K Domn K NzRing x Base K y Base K x K y = 0 K x = 0 K y = 0 K
30 eqid Base L = Base L
31 eqid L = L
32 eqid 0 L = 0 L
33 30 31 32 isdomn L Domn L NzRing x Base L y Base L x L y = 0 L x = 0 L y = 0 L
34 25 29 33 3bitr4g φ K Domn L Domn