| Step |
Hyp |
Ref |
Expression |
| 1 |
|
domnmuln0rd.b |
|- B = ( Base ` R ) |
| 2 |
|
domnmuln0rd.t |
|- .x. = ( .r ` R ) |
| 3 |
|
domnmuln0rd.z |
|- .0. = ( 0g ` R ) |
| 4 |
|
domnmuln0rd.1 |
|- ( ph -> R e. Domn ) |
| 5 |
|
domnmuln0rd.2 |
|- ( ph -> X e. B ) |
| 6 |
|
domnmuln0rd.3 |
|- ( ph -> Y e. B ) |
| 7 |
|
domnmuln0rd.4 |
|- ( ph -> ( X .x. Y ) =/= .0. ) |
| 8 |
1 2 3
|
domneq0 |
|- ( ( R e. Domn /\ X e. B /\ Y e. B ) -> ( ( X .x. Y ) = .0. <-> ( X = .0. \/ Y = .0. ) ) ) |
| 9 |
4 5 6 8
|
syl3anc |
|- ( ph -> ( ( X .x. Y ) = .0. <-> ( X = .0. \/ Y = .0. ) ) ) |
| 10 |
9
|
necon3abid |
|- ( ph -> ( ( X .x. Y ) =/= .0. <-> -. ( X = .0. \/ Y = .0. ) ) ) |
| 11 |
7 10
|
mpbid |
|- ( ph -> -. ( X = .0. \/ Y = .0. ) ) |
| 12 |
|
ioran |
|- ( -. ( X = .0. \/ Y = .0. ) <-> ( -. X = .0. /\ -. Y = .0. ) ) |
| 13 |
11 12
|
sylib |
|- ( ph -> ( -. X = .0. /\ -. Y = .0. ) ) |
| 14 |
|
neqne |
|- ( -. X = .0. -> X =/= .0. ) |
| 15 |
|
neqne |
|- ( -. Y = .0. -> Y =/= .0. ) |
| 16 |
14 15
|
anim12i |
|- ( ( -. X = .0. /\ -. Y = .0. ) -> ( X =/= .0. /\ Y =/= .0. ) ) |
| 17 |
13 16
|
syl |
|- ( ph -> ( X =/= .0. /\ Y =/= .0. ) ) |