Metamath Proof Explorer


Theorem domnmuln0rd

Description: In a domain, factors of a nonzero product are nonzero. (Contributed by Thierry Arnoux, 8-Jun-2025)

Ref Expression
Hypotheses domnmuln0rd.b
|- B = ( Base ` R )
domnmuln0rd.t
|- .x. = ( .r ` R )
domnmuln0rd.z
|- .0. = ( 0g ` R )
domnmuln0rd.1
|- ( ph -> R e. Domn )
domnmuln0rd.2
|- ( ph -> X e. B )
domnmuln0rd.3
|- ( ph -> Y e. B )
domnmuln0rd.4
|- ( ph -> ( X .x. Y ) =/= .0. )
Assertion domnmuln0rd
|- ( ph -> ( X =/= .0. /\ Y =/= .0. ) )

Proof

Step Hyp Ref Expression
1 domnmuln0rd.b
 |-  B = ( Base ` R )
2 domnmuln0rd.t
 |-  .x. = ( .r ` R )
3 domnmuln0rd.z
 |-  .0. = ( 0g ` R )
4 domnmuln0rd.1
 |-  ( ph -> R e. Domn )
5 domnmuln0rd.2
 |-  ( ph -> X e. B )
6 domnmuln0rd.3
 |-  ( ph -> Y e. B )
7 domnmuln0rd.4
 |-  ( ph -> ( X .x. Y ) =/= .0. )
8 1 2 3 domneq0
 |-  ( ( R e. Domn /\ X e. B /\ Y e. B ) -> ( ( X .x. Y ) = .0. <-> ( X = .0. \/ Y = .0. ) ) )
9 4 5 6 8 syl3anc
 |-  ( ph -> ( ( X .x. Y ) = .0. <-> ( X = .0. \/ Y = .0. ) ) )
10 9 necon3abid
 |-  ( ph -> ( ( X .x. Y ) =/= .0. <-> -. ( X = .0. \/ Y = .0. ) ) )
11 7 10 mpbid
 |-  ( ph -> -. ( X = .0. \/ Y = .0. ) )
12 ioran
 |-  ( -. ( X = .0. \/ Y = .0. ) <-> ( -. X = .0. /\ -. Y = .0. ) )
13 11 12 sylib
 |-  ( ph -> ( -. X = .0. /\ -. Y = .0. ) )
14 neqne
 |-  ( -. X = .0. -> X =/= .0. )
15 neqne
 |-  ( -. Y = .0. -> Y =/= .0. )
16 14 15 anim12i
 |-  ( ( -. X = .0. /\ -. Y = .0. ) -> ( X =/= .0. /\ Y =/= .0. ) )
17 13 16 syl
 |-  ( ph -> ( X =/= .0. /\ Y =/= .0. ) )