Metamath Proof Explorer


Theorem r19.29ffa

Description: A commonly used pattern based on r19.29 , version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017)

Ref Expression
Hypothesis r19.29ffa.3 ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑦𝐵 ) ∧ 𝜓 ) → 𝜒 )
Assertion r19.29ffa ( ( 𝜑 ∧ ∃ 𝑥𝐴𝑦𝐵 𝜓 ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 r19.29ffa.3 ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑦𝐵 ) ∧ 𝜓 ) → 𝜒 )
2 1 ex ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑦𝐵 ) → ( 𝜓𝜒 ) )
3 2 ralrimiva ( ( 𝜑𝑥𝐴 ) → ∀ 𝑦𝐵 ( 𝜓𝜒 ) )
4 3 ralrimiva ( 𝜑 → ∀ 𝑥𝐴𝑦𝐵 ( 𝜓𝜒 ) )
5 4 adantr ( ( 𝜑 ∧ ∃ 𝑥𝐴𝑦𝐵 𝜓 ) → ∀ 𝑥𝐴𝑦𝐵 ( 𝜓𝜒 ) )
6 simpr ( ( 𝜑 ∧ ∃ 𝑥𝐴𝑦𝐵 𝜓 ) → ∃ 𝑥𝐴𝑦𝐵 𝜓 )
7 5 6 r19.29d2r ( ( 𝜑 ∧ ∃ 𝑥𝐴𝑦𝐵 𝜓 ) → ∃ 𝑥𝐴𝑦𝐵 ( ( 𝜓𝜒 ) ∧ 𝜓 ) )
8 pm3.35 ( ( 𝜓 ∧ ( 𝜓𝜒 ) ) → 𝜒 )
9 8 ancoms ( ( ( 𝜓𝜒 ) ∧ 𝜓 ) → 𝜒 )
10 9 rexlimivw ( ∃ 𝑦𝐵 ( ( 𝜓𝜒 ) ∧ 𝜓 ) → 𝜒 )
11 10 rexlimivw ( ∃ 𝑥𝐴𝑦𝐵 ( ( 𝜓𝜒 ) ∧ 𝜓 ) → 𝜒 )
12 7 11 syl ( ( 𝜑 ∧ ∃ 𝑥𝐴𝑦𝐵 𝜓 ) → 𝜒 )