Step |
Hyp |
Ref |
Expression |
1 |
|
r19.29ffa.3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) → 𝜒 ) |
2 |
1
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝜓 → 𝜒 ) ) |
3 |
2
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝜒 ) ) |
4 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝜒 ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜓 → 𝜒 ) ) |
6 |
|
simpr |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 ) |
7 |
5 6
|
r19.29d2r |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( ( 𝜓 → 𝜒 ) ∧ 𝜓 ) ) |
8 |
|
pm3.35 |
⊢ ( ( 𝜓 ∧ ( 𝜓 → 𝜒 ) ) → 𝜒 ) |
9 |
8
|
ancoms |
⊢ ( ( ( 𝜓 → 𝜒 ) ∧ 𝜓 ) → 𝜒 ) |
10 |
9
|
rexlimivw |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( ( 𝜓 → 𝜒 ) ∧ 𝜓 ) → 𝜒 ) |
11 |
10
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( ( 𝜓 → 𝜒 ) ∧ 𝜓 ) → 𝜒 ) |
12 |
7 11
|
syl |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 ) → 𝜒 ) |