Description: Multiplication is commutative in a commutative ring. (Contributed by SN, 8-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | crngcomd.b | |- B = ( Base ` R ) |
|
crngcomd.t | |- .x. = ( .r ` R ) |
||
crngcomd.r | |- ( ph -> R e. CRing ) |
||
crngcomd.1 | |- ( ph -> X e. B ) |
||
crngcomd.2 | |- ( ph -> Y e. B ) |
||
Assertion | crngcomd | |- ( ph -> ( X .x. Y ) = ( Y .x. X ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngcomd.b | |- B = ( Base ` R ) |
|
2 | crngcomd.t | |- .x. = ( .r ` R ) |
|
3 | crngcomd.r | |- ( ph -> R e. CRing ) |
|
4 | crngcomd.1 | |- ( ph -> X e. B ) |
|
5 | crngcomd.2 | |- ( ph -> Y e. B ) |
|
6 | 1 2 | crngcom | |- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> ( X .x. Y ) = ( Y .x. X ) ) |
7 | 3 4 5 6 | syl3anc | |- ( ph -> ( X .x. Y ) = ( Y .x. X ) ) |