Metamath Proof Explorer


Theorem crngcomd

Description: Multiplication is commutative in a commutative ring. (Contributed by SN, 8-Mar-2025)

Ref Expression
Hypotheses crngcomd.b
|- B = ( Base ` R )
crngcomd.t
|- .x. = ( .r ` R )
crngcomd.r
|- ( ph -> R e. CRing )
crngcomd.1
|- ( ph -> X e. B )
crngcomd.2
|- ( ph -> Y e. B )
Assertion crngcomd
|- ( ph -> ( X .x. Y ) = ( Y .x. X ) )

Proof

Step Hyp Ref Expression
1 crngcomd.b
 |-  B = ( Base ` R )
2 crngcomd.t
 |-  .x. = ( .r ` R )
3 crngcomd.r
 |-  ( ph -> R e. CRing )
4 crngcomd.1
 |-  ( ph -> X e. B )
5 crngcomd.2
 |-  ( ph -> Y e. B )
6 1 2 crngcom
 |-  ( ( R e. CRing /\ X e. B /\ Y e. B ) -> ( X .x. Y ) = ( Y .x. X ) )
7 3 4 5 6 syl3anc
 |-  ( ph -> ( X .x. Y ) = ( Y .x. X ) )