Metamath Proof Explorer


Theorem crng12d

Description: Commutative/associative law that swaps the first two factors in a triple product. (Contributed by SN, 8-Mar-2025)

Ref Expression
Hypotheses crng12d.b
|- B = ( Base ` R )
crng12d.t
|- .x. = ( .r ` R )
crng12d.r
|- ( ph -> R e. CRing )
crng12d.1
|- ( ph -> X e. B )
crng12d.2
|- ( ph -> Y e. B )
crng12d.3
|- ( ph -> Z e. B )
Assertion crng12d
|- ( ph -> ( X .x. ( Y .x. Z ) ) = ( Y .x. ( X .x. Z ) ) )

Proof

Step Hyp Ref Expression
1 crng12d.b
 |-  B = ( Base ` R )
2 crng12d.t
 |-  .x. = ( .r ` R )
3 crng12d.r
 |-  ( ph -> R e. CRing )
4 crng12d.1
 |-  ( ph -> X e. B )
5 crng12d.2
 |-  ( ph -> Y e. B )
6 crng12d.3
 |-  ( ph -> Z e. B )
7 1 2 3 4 5 crngcomd
 |-  ( ph -> ( X .x. Y ) = ( Y .x. X ) )
8 7 oveq1d
 |-  ( ph -> ( ( X .x. Y ) .x. Z ) = ( ( Y .x. X ) .x. Z ) )
9 3 crngringd
 |-  ( ph -> R e. Ring )
10 1 2 9 4 5 6 ringassd
 |-  ( ph -> ( ( X .x. Y ) .x. Z ) = ( X .x. ( Y .x. Z ) ) )
11 1 2 9 5 4 6 ringassd
 |-  ( ph -> ( ( Y .x. X ) .x. Z ) = ( Y .x. ( X .x. Z ) ) )
12 8 10 11 3eqtr3d
 |-  ( ph -> ( X .x. ( Y .x. Z ) ) = ( Y .x. ( X .x. Z ) ) )