Step |
Hyp |
Ref |
Expression |
1 |
|
crng12d.b |
|- B = ( Base ` R ) |
2 |
|
crng12d.t |
|- .x. = ( .r ` R ) |
3 |
|
crng12d.r |
|- ( ph -> R e. CRing ) |
4 |
|
crng12d.1 |
|- ( ph -> X e. B ) |
5 |
|
crng12d.2 |
|- ( ph -> Y e. B ) |
6 |
|
crng12d.3 |
|- ( ph -> Z e. B ) |
7 |
1 2 3 4 5
|
crngcomd |
|- ( ph -> ( X .x. Y ) = ( Y .x. X ) ) |
8 |
7
|
oveq1d |
|- ( ph -> ( ( X .x. Y ) .x. Z ) = ( ( Y .x. X ) .x. Z ) ) |
9 |
3
|
crngringd |
|- ( ph -> R e. Ring ) |
10 |
1 2 9 4 5 6
|
ringassd |
|- ( ph -> ( ( X .x. Y ) .x. Z ) = ( X .x. ( Y .x. Z ) ) ) |
11 |
1 2 9 5 4 6
|
ringassd |
|- ( ph -> ( ( Y .x. X ) .x. Z ) = ( Y .x. ( X .x. Z ) ) ) |
12 |
8 10 11
|
3eqtr3d |
|- ( ph -> ( X .x. ( Y .x. Z ) ) = ( Y .x. ( X .x. Z ) ) ) |