Step |
Hyp |
Ref |
Expression |
1 |
|
imacrhmcl.c |
|- C = ( N |`s ( F " S ) ) |
2 |
|
imacrhmcl.h |
|- ( ph -> F e. ( M RingHom N ) ) |
3 |
|
imacrhmcl.m |
|- ( ph -> M e. CRing ) |
4 |
|
imacrhmcl.s |
|- ( ph -> S e. ( SubRing ` M ) ) |
5 |
|
rhmima |
|- ( ( F e. ( M RingHom N ) /\ S e. ( SubRing ` M ) ) -> ( F " S ) e. ( SubRing ` N ) ) |
6 |
2 4 5
|
syl2anc |
|- ( ph -> ( F " S ) e. ( SubRing ` N ) ) |
7 |
1
|
subrgring |
|- ( ( F " S ) e. ( SubRing ` N ) -> C e. Ring ) |
8 |
6 7
|
syl |
|- ( ph -> C e. Ring ) |
9 |
1
|
ressbasss2 |
|- ( Base ` C ) C_ ( F " S ) |
10 |
9
|
sseli |
|- ( x e. ( Base ` C ) -> x e. ( F " S ) ) |
11 |
9
|
sseli |
|- ( y e. ( Base ` C ) -> y e. ( F " S ) ) |
12 |
10 11
|
anim12i |
|- ( ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( x e. ( F " S ) /\ y e. ( F " S ) ) ) |
13 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
14 |
|
eqid |
|- ( Base ` N ) = ( Base ` N ) |
15 |
13 14
|
rhmf |
|- ( F e. ( M RingHom N ) -> F : ( Base ` M ) --> ( Base ` N ) ) |
16 |
2 15
|
syl |
|- ( ph -> F : ( Base ` M ) --> ( Base ` N ) ) |
17 |
16
|
ffund |
|- ( ph -> Fun F ) |
18 |
|
fvelima |
|- ( ( Fun F /\ x e. ( F " S ) ) -> E. a e. S ( F ` a ) = x ) |
19 |
17 18
|
sylan |
|- ( ( ph /\ x e. ( F " S ) ) -> E. a e. S ( F ` a ) = x ) |
20 |
19
|
adantrr |
|- ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) -> E. a e. S ( F ` a ) = x ) |
21 |
|
fvelima |
|- ( ( Fun F /\ y e. ( F " S ) ) -> E. b e. S ( F ` b ) = y ) |
22 |
17 21
|
sylan |
|- ( ( ph /\ y e. ( F " S ) ) -> E. b e. S ( F ` b ) = y ) |
23 |
22
|
adantrl |
|- ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) -> E. b e. S ( F ` b ) = y ) |
24 |
23
|
adantr |
|- ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) -> E. b e. S ( F ` b ) = y ) |
25 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> M e. CRing ) |
26 |
13
|
subrgss |
|- ( S e. ( SubRing ` M ) -> S C_ ( Base ` M ) ) |
27 |
4 26
|
syl |
|- ( ph -> S C_ ( Base ` M ) ) |
28 |
27
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> S C_ ( Base ` M ) ) |
29 |
|
simplrl |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> a e. S ) |
30 |
28 29
|
sseldd |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> a e. ( Base ` M ) ) |
31 |
|
simprl |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> b e. S ) |
32 |
28 31
|
sseldd |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> b e. ( Base ` M ) ) |
33 |
|
eqid |
|- ( .r ` M ) = ( .r ` M ) |
34 |
13 33
|
crngcom |
|- ( ( M e. CRing /\ a e. ( Base ` M ) /\ b e. ( Base ` M ) ) -> ( a ( .r ` M ) b ) = ( b ( .r ` M ) a ) ) |
35 |
25 30 32 34
|
syl3anc |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> ( a ( .r ` M ) b ) = ( b ( .r ` M ) a ) ) |
36 |
35
|
fveq2d |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> ( F ` ( a ( .r ` M ) b ) ) = ( F ` ( b ( .r ` M ) a ) ) ) |
37 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> F e. ( M RingHom N ) ) |
38 |
|
eqid |
|- ( .r ` N ) = ( .r ` N ) |
39 |
13 33 38
|
rhmmul |
|- ( ( F e. ( M RingHom N ) /\ a e. ( Base ` M ) /\ b e. ( Base ` M ) ) -> ( F ` ( a ( .r ` M ) b ) ) = ( ( F ` a ) ( .r ` N ) ( F ` b ) ) ) |
40 |
37 30 32 39
|
syl3anc |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> ( F ` ( a ( .r ` M ) b ) ) = ( ( F ` a ) ( .r ` N ) ( F ` b ) ) ) |
41 |
13 33 38
|
rhmmul |
|- ( ( F e. ( M RingHom N ) /\ b e. ( Base ` M ) /\ a e. ( Base ` M ) ) -> ( F ` ( b ( .r ` M ) a ) ) = ( ( F ` b ) ( .r ` N ) ( F ` a ) ) ) |
42 |
37 32 30 41
|
syl3anc |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> ( F ` ( b ( .r ` M ) a ) ) = ( ( F ` b ) ( .r ` N ) ( F ` a ) ) ) |
43 |
36 40 42
|
3eqtr3d |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> ( ( F ` a ) ( .r ` N ) ( F ` b ) ) = ( ( F ` b ) ( .r ` N ) ( F ` a ) ) ) |
44 |
|
imaexg |
|- ( F e. ( M RingHom N ) -> ( F " S ) e. _V ) |
45 |
1 38
|
ressmulr |
|- ( ( F " S ) e. _V -> ( .r ` N ) = ( .r ` C ) ) |
46 |
2 44 45
|
3syl |
|- ( ph -> ( .r ` N ) = ( .r ` C ) ) |
47 |
46
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> ( .r ` N ) = ( .r ` C ) ) |
48 |
|
simplrr |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> ( F ` a ) = x ) |
49 |
|
simprr |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> ( F ` b ) = y ) |
50 |
47 48 49
|
oveq123d |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> ( ( F ` a ) ( .r ` N ) ( F ` b ) ) = ( x ( .r ` C ) y ) ) |
51 |
47 49 48
|
oveq123d |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> ( ( F ` b ) ( .r ` N ) ( F ` a ) ) = ( y ( .r ` C ) x ) ) |
52 |
43 50 51
|
3eqtr3d |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> ( x ( .r ` C ) y ) = ( y ( .r ` C ) x ) ) |
53 |
24 52
|
rexlimddv |
|- ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) -> ( x ( .r ` C ) y ) = ( y ( .r ` C ) x ) ) |
54 |
20 53
|
rexlimddv |
|- ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) -> ( x ( .r ` C ) y ) = ( y ( .r ` C ) x ) ) |
55 |
12 54
|
sylan2 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( .r ` C ) y ) = ( y ( .r ` C ) x ) ) |
56 |
55
|
ralrimivva |
|- ( ph -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x ( .r ` C ) y ) = ( y ( .r ` C ) x ) ) |
57 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
58 |
|
eqid |
|- ( .r ` C ) = ( .r ` C ) |
59 |
57 58
|
iscrng2 |
|- ( C e. CRing <-> ( C e. Ring /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x ( .r ` C ) y ) = ( y ( .r ` C ) x ) ) ) |
60 |
8 56 59
|
sylanbrc |
|- ( ph -> C e. CRing ) |