| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imacrhmcl.c |
|- C = ( N |`s ( F " S ) ) |
| 2 |
|
imacrhmcl.h |
|- ( ph -> F e. ( M RingHom N ) ) |
| 3 |
|
imacrhmcl.m |
|- ( ph -> M e. CRing ) |
| 4 |
|
imacrhmcl.s |
|- ( ph -> S e. ( SubRing ` M ) ) |
| 5 |
|
rhmima |
|- ( ( F e. ( M RingHom N ) /\ S e. ( SubRing ` M ) ) -> ( F " S ) e. ( SubRing ` N ) ) |
| 6 |
2 4 5
|
syl2anc |
|- ( ph -> ( F " S ) e. ( SubRing ` N ) ) |
| 7 |
1
|
subrgring |
|- ( ( F " S ) e. ( SubRing ` N ) -> C e. Ring ) |
| 8 |
6 7
|
syl |
|- ( ph -> C e. Ring ) |
| 9 |
1
|
ressbasss2 |
|- ( Base ` C ) C_ ( F " S ) |
| 10 |
9
|
sseli |
|- ( x e. ( Base ` C ) -> x e. ( F " S ) ) |
| 11 |
9
|
sseli |
|- ( y e. ( Base ` C ) -> y e. ( F " S ) ) |
| 12 |
10 11
|
anim12i |
|- ( ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( x e. ( F " S ) /\ y e. ( F " S ) ) ) |
| 13 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
| 14 |
|
eqid |
|- ( Base ` N ) = ( Base ` N ) |
| 15 |
13 14
|
rhmf |
|- ( F e. ( M RingHom N ) -> F : ( Base ` M ) --> ( Base ` N ) ) |
| 16 |
2 15
|
syl |
|- ( ph -> F : ( Base ` M ) --> ( Base ` N ) ) |
| 17 |
16
|
ffund |
|- ( ph -> Fun F ) |
| 18 |
|
fvelima |
|- ( ( Fun F /\ x e. ( F " S ) ) -> E. a e. S ( F ` a ) = x ) |
| 19 |
17 18
|
sylan |
|- ( ( ph /\ x e. ( F " S ) ) -> E. a e. S ( F ` a ) = x ) |
| 20 |
19
|
adantrr |
|- ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) -> E. a e. S ( F ` a ) = x ) |
| 21 |
|
fvelima |
|- ( ( Fun F /\ y e. ( F " S ) ) -> E. b e. S ( F ` b ) = y ) |
| 22 |
17 21
|
sylan |
|- ( ( ph /\ y e. ( F " S ) ) -> E. b e. S ( F ` b ) = y ) |
| 23 |
22
|
adantrl |
|- ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) -> E. b e. S ( F ` b ) = y ) |
| 24 |
23
|
adantr |
|- ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) -> E. b e. S ( F ` b ) = y ) |
| 25 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> M e. CRing ) |
| 26 |
13
|
subrgss |
|- ( S e. ( SubRing ` M ) -> S C_ ( Base ` M ) ) |
| 27 |
4 26
|
syl |
|- ( ph -> S C_ ( Base ` M ) ) |
| 28 |
27
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> S C_ ( Base ` M ) ) |
| 29 |
|
simplrl |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> a e. S ) |
| 30 |
28 29
|
sseldd |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> a e. ( Base ` M ) ) |
| 31 |
|
simprl |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> b e. S ) |
| 32 |
28 31
|
sseldd |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> b e. ( Base ` M ) ) |
| 33 |
|
eqid |
|- ( .r ` M ) = ( .r ` M ) |
| 34 |
13 33
|
crngcom |
|- ( ( M e. CRing /\ a e. ( Base ` M ) /\ b e. ( Base ` M ) ) -> ( a ( .r ` M ) b ) = ( b ( .r ` M ) a ) ) |
| 35 |
25 30 32 34
|
syl3anc |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> ( a ( .r ` M ) b ) = ( b ( .r ` M ) a ) ) |
| 36 |
35
|
fveq2d |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> ( F ` ( a ( .r ` M ) b ) ) = ( F ` ( b ( .r ` M ) a ) ) ) |
| 37 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> F e. ( M RingHom N ) ) |
| 38 |
|
eqid |
|- ( .r ` N ) = ( .r ` N ) |
| 39 |
13 33 38
|
rhmmul |
|- ( ( F e. ( M RingHom N ) /\ a e. ( Base ` M ) /\ b e. ( Base ` M ) ) -> ( F ` ( a ( .r ` M ) b ) ) = ( ( F ` a ) ( .r ` N ) ( F ` b ) ) ) |
| 40 |
37 30 32 39
|
syl3anc |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> ( F ` ( a ( .r ` M ) b ) ) = ( ( F ` a ) ( .r ` N ) ( F ` b ) ) ) |
| 41 |
13 33 38
|
rhmmul |
|- ( ( F e. ( M RingHom N ) /\ b e. ( Base ` M ) /\ a e. ( Base ` M ) ) -> ( F ` ( b ( .r ` M ) a ) ) = ( ( F ` b ) ( .r ` N ) ( F ` a ) ) ) |
| 42 |
37 32 30 41
|
syl3anc |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> ( F ` ( b ( .r ` M ) a ) ) = ( ( F ` b ) ( .r ` N ) ( F ` a ) ) ) |
| 43 |
36 40 42
|
3eqtr3d |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> ( ( F ` a ) ( .r ` N ) ( F ` b ) ) = ( ( F ` b ) ( .r ` N ) ( F ` a ) ) ) |
| 44 |
|
imaexg |
|- ( F e. ( M RingHom N ) -> ( F " S ) e. _V ) |
| 45 |
1 38
|
ressmulr |
|- ( ( F " S ) e. _V -> ( .r ` N ) = ( .r ` C ) ) |
| 46 |
2 44 45
|
3syl |
|- ( ph -> ( .r ` N ) = ( .r ` C ) ) |
| 47 |
46
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> ( .r ` N ) = ( .r ` C ) ) |
| 48 |
|
simplrr |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> ( F ` a ) = x ) |
| 49 |
|
simprr |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> ( F ` b ) = y ) |
| 50 |
47 48 49
|
oveq123d |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> ( ( F ` a ) ( .r ` N ) ( F ` b ) ) = ( x ( .r ` C ) y ) ) |
| 51 |
47 49 48
|
oveq123d |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> ( ( F ` b ) ( .r ` N ) ( F ` a ) ) = ( y ( .r ` C ) x ) ) |
| 52 |
43 50 51
|
3eqtr3d |
|- ( ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) /\ ( b e. S /\ ( F ` b ) = y ) ) -> ( x ( .r ` C ) y ) = ( y ( .r ` C ) x ) ) |
| 53 |
24 52
|
rexlimddv |
|- ( ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) /\ ( a e. S /\ ( F ` a ) = x ) ) -> ( x ( .r ` C ) y ) = ( y ( .r ` C ) x ) ) |
| 54 |
20 53
|
rexlimddv |
|- ( ( ph /\ ( x e. ( F " S ) /\ y e. ( F " S ) ) ) -> ( x ( .r ` C ) y ) = ( y ( .r ` C ) x ) ) |
| 55 |
12 54
|
sylan2 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( .r ` C ) y ) = ( y ( .r ` C ) x ) ) |
| 56 |
55
|
ralrimivva |
|- ( ph -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x ( .r ` C ) y ) = ( y ( .r ` C ) x ) ) |
| 57 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 58 |
|
eqid |
|- ( .r ` C ) = ( .r ` C ) |
| 59 |
57 58
|
iscrng2 |
|- ( C e. CRing <-> ( C e. Ring /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x ( .r ` C ) y ) = ( y ( .r ` C ) x ) ) ) |
| 60 |
8 56 59
|
sylanbrc |
|- ( ph -> C e. CRing ) |