| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imacrhmcl.c |
|
| 2 |
|
imacrhmcl.h |
|
| 3 |
|
imacrhmcl.m |
|
| 4 |
|
imacrhmcl.s |
|
| 5 |
|
rhmima |
|
| 6 |
2 4 5
|
syl2anc |
|
| 7 |
1
|
subrgring |
|
| 8 |
6 7
|
syl |
|
| 9 |
1
|
ressbasss2 |
|
| 10 |
9
|
sseli |
|
| 11 |
9
|
sseli |
|
| 12 |
10 11
|
anim12i |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
13 14
|
rhmf |
|
| 16 |
2 15
|
syl |
|
| 17 |
16
|
ffund |
|
| 18 |
|
fvelima |
|
| 19 |
17 18
|
sylan |
|
| 20 |
19
|
adantrr |
|
| 21 |
|
fvelima |
|
| 22 |
17 21
|
sylan |
|
| 23 |
22
|
adantrl |
|
| 24 |
23
|
adantr |
|
| 25 |
3
|
ad3antrrr |
|
| 26 |
13
|
subrgss |
|
| 27 |
4 26
|
syl |
|
| 28 |
27
|
ad3antrrr |
|
| 29 |
|
simplrl |
|
| 30 |
28 29
|
sseldd |
|
| 31 |
|
simprl |
|
| 32 |
28 31
|
sseldd |
|
| 33 |
|
eqid |
|
| 34 |
13 33
|
crngcom |
|
| 35 |
25 30 32 34
|
syl3anc |
|
| 36 |
35
|
fveq2d |
|
| 37 |
2
|
ad3antrrr |
|
| 38 |
|
eqid |
|
| 39 |
13 33 38
|
rhmmul |
|
| 40 |
37 30 32 39
|
syl3anc |
|
| 41 |
13 33 38
|
rhmmul |
|
| 42 |
37 32 30 41
|
syl3anc |
|
| 43 |
36 40 42
|
3eqtr3d |
|
| 44 |
|
imaexg |
|
| 45 |
1 38
|
ressmulr |
|
| 46 |
2 44 45
|
3syl |
|
| 47 |
46
|
ad3antrrr |
|
| 48 |
|
simplrr |
|
| 49 |
|
simprr |
|
| 50 |
47 48 49
|
oveq123d |
|
| 51 |
47 49 48
|
oveq123d |
|
| 52 |
43 50 51
|
3eqtr3d |
|
| 53 |
24 52
|
rexlimddv |
|
| 54 |
20 53
|
rexlimddv |
|
| 55 |
12 54
|
sylan2 |
|
| 56 |
55
|
ralrimivva |
|
| 57 |
|
eqid |
|
| 58 |
|
eqid |
|
| 59 |
57 58
|
iscrng2 |
|
| 60 |
8 56 59
|
sylanbrc |
|