| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evl1deg1.1 |
|- P = ( Poly1 ` R ) |
| 2 |
|
evl1deg1.2 |
|- O = ( eval1 ` R ) |
| 3 |
|
evl1deg1.3 |
|- K = ( Base ` R ) |
| 4 |
|
evl1deg1.4 |
|- U = ( Base ` P ) |
| 5 |
|
evl1deg1.5 |
|- .x. = ( .r ` R ) |
| 6 |
|
evl1deg1.6 |
|- .+ = ( +g ` R ) |
| 7 |
|
evl1deg2.p |
|- .^ = ( .g ` ( mulGrp ` R ) ) |
| 8 |
|
evl1deg3.f |
|- F = ( coe1 ` M ) |
| 9 |
|
evl1deg3.e |
|- E = ( deg1 ` R ) |
| 10 |
|
evl1deg3.a |
|- A = ( F ` 3 ) |
| 11 |
|
evl1deg3.b |
|- B = ( F ` 2 ) |
| 12 |
|
evl1deg3.c |
|- C = ( F ` 1 ) |
| 13 |
|
evl1deg3.d |
|- D = ( F ` 0 ) |
| 14 |
|
evl1deg3.r |
|- ( ph -> R e. CRing ) |
| 15 |
|
evl1deg3.m |
|- ( ph -> M e. U ) |
| 16 |
|
evl1deg3.1 |
|- ( ph -> ( E ` M ) = 3 ) |
| 17 |
|
evl1deg3.x |
|- ( ph -> X e. K ) |
| 18 |
|
oveq2 |
|- ( x = X -> ( k .^ x ) = ( k .^ X ) ) |
| 19 |
18
|
oveq2d |
|- ( x = X -> ( ( F ` k ) .x. ( k .^ x ) ) = ( ( F ` k ) .x. ( k .^ X ) ) ) |
| 20 |
19
|
mpteq2dv |
|- ( x = X -> ( k e. NN0 |-> ( ( F ` k ) .x. ( k .^ x ) ) ) = ( k e. NN0 |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) |
| 21 |
20
|
oveq2d |
|- ( x = X -> ( R gsum ( k e. NN0 |-> ( ( F ` k ) .x. ( k .^ x ) ) ) ) = ( R gsum ( k e. NN0 |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) ) |
| 22 |
2 1 3 4 14 15 5 7 8
|
evl1fpws |
|- ( ph -> ( O ` M ) = ( x e. K |-> ( R gsum ( k e. NN0 |-> ( ( F ` k ) .x. ( k .^ x ) ) ) ) ) ) |
| 23 |
|
ovexd |
|- ( ph -> ( R gsum ( k e. NN0 |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) e. _V ) |
| 24 |
21 22 17 23
|
fvmptd4 |
|- ( ph -> ( ( O ` M ) ` X ) = ( R gsum ( k e. NN0 |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) ) |
| 25 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 26 |
14
|
crngringd |
|- ( ph -> R e. Ring ) |
| 27 |
26
|
ringcmnd |
|- ( ph -> R e. CMnd ) |
| 28 |
|
nn0ex |
|- NN0 e. _V |
| 29 |
28
|
a1i |
|- ( ph -> NN0 e. _V ) |
| 30 |
26
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> R e. Ring ) |
| 31 |
8 4 1 3
|
coe1fvalcl |
|- ( ( M e. U /\ k e. NN0 ) -> ( F ` k ) e. K ) |
| 32 |
15 31
|
sylan |
|- ( ( ph /\ k e. NN0 ) -> ( F ` k ) e. K ) |
| 33 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 34 |
33 3
|
mgpbas |
|- K = ( Base ` ( mulGrp ` R ) ) |
| 35 |
33
|
ringmgp |
|- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
| 36 |
26 35
|
syl |
|- ( ph -> ( mulGrp ` R ) e. Mnd ) |
| 37 |
36
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> ( mulGrp ` R ) e. Mnd ) |
| 38 |
|
simpr |
|- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
| 39 |
17
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> X e. K ) |
| 40 |
34 7 37 38 39
|
mulgnn0cld |
|- ( ( ph /\ k e. NN0 ) -> ( k .^ X ) e. K ) |
| 41 |
3 5 30 32 40
|
ringcld |
|- ( ( ph /\ k e. NN0 ) -> ( ( F ` k ) .x. ( k .^ X ) ) e. K ) |
| 42 |
|
fvexd |
|- ( ph -> ( 0g ` R ) e. _V ) |
| 43 |
|
fveq2 |
|- ( k = j -> ( F ` k ) = ( F ` j ) ) |
| 44 |
|
oveq1 |
|- ( k = j -> ( k .^ X ) = ( j .^ X ) ) |
| 45 |
43 44
|
oveq12d |
|- ( k = j -> ( ( F ` k ) .x. ( k .^ X ) ) = ( ( F ` j ) .x. ( j .^ X ) ) ) |
| 46 |
|
breq1 |
|- ( i = ( E ` M ) -> ( i < j <-> ( E ` M ) < j ) ) |
| 47 |
46
|
imbi1d |
|- ( i = ( E ` M ) -> ( ( i < j -> ( ( F ` j ) .x. ( j .^ X ) ) = ( 0g ` R ) ) <-> ( ( E ` M ) < j -> ( ( F ` j ) .x. ( j .^ X ) ) = ( 0g ` R ) ) ) ) |
| 48 |
47
|
ralbidv |
|- ( i = ( E ` M ) -> ( A. j e. NN0 ( i < j -> ( ( F ` j ) .x. ( j .^ X ) ) = ( 0g ` R ) ) <-> A. j e. NN0 ( ( E ` M ) < j -> ( ( F ` j ) .x. ( j .^ X ) ) = ( 0g ` R ) ) ) ) |
| 49 |
|
3nn0 |
|- 3 e. NN0 |
| 50 |
49
|
a1i |
|- ( ph -> 3 e. NN0 ) |
| 51 |
16 50
|
eqeltrd |
|- ( ph -> ( E ` M ) e. NN0 ) |
| 52 |
15
|
ad2antrr |
|- ( ( ( ph /\ j e. NN0 ) /\ ( E ` M ) < j ) -> M e. U ) |
| 53 |
|
simplr |
|- ( ( ( ph /\ j e. NN0 ) /\ ( E ` M ) < j ) -> j e. NN0 ) |
| 54 |
|
simpr |
|- ( ( ( ph /\ j e. NN0 ) /\ ( E ` M ) < j ) -> ( E ` M ) < j ) |
| 55 |
9 1 4 25 8
|
deg1lt |
|- ( ( M e. U /\ j e. NN0 /\ ( E ` M ) < j ) -> ( F ` j ) = ( 0g ` R ) ) |
| 56 |
52 53 54 55
|
syl3anc |
|- ( ( ( ph /\ j e. NN0 ) /\ ( E ` M ) < j ) -> ( F ` j ) = ( 0g ` R ) ) |
| 57 |
56
|
oveq1d |
|- ( ( ( ph /\ j e. NN0 ) /\ ( E ` M ) < j ) -> ( ( F ` j ) .x. ( j .^ X ) ) = ( ( 0g ` R ) .x. ( j .^ X ) ) ) |
| 58 |
26
|
ad2antrr |
|- ( ( ( ph /\ j e. NN0 ) /\ ( E ` M ) < j ) -> R e. Ring ) |
| 59 |
58 35
|
syl |
|- ( ( ( ph /\ j e. NN0 ) /\ ( E ` M ) < j ) -> ( mulGrp ` R ) e. Mnd ) |
| 60 |
17
|
ad2antrr |
|- ( ( ( ph /\ j e. NN0 ) /\ ( E ` M ) < j ) -> X e. K ) |
| 61 |
34 7 59 53 60
|
mulgnn0cld |
|- ( ( ( ph /\ j e. NN0 ) /\ ( E ` M ) < j ) -> ( j .^ X ) e. K ) |
| 62 |
3 5 25 58 61
|
ringlzd |
|- ( ( ( ph /\ j e. NN0 ) /\ ( E ` M ) < j ) -> ( ( 0g ` R ) .x. ( j .^ X ) ) = ( 0g ` R ) ) |
| 63 |
57 62
|
eqtrd |
|- ( ( ( ph /\ j e. NN0 ) /\ ( E ` M ) < j ) -> ( ( F ` j ) .x. ( j .^ X ) ) = ( 0g ` R ) ) |
| 64 |
63
|
ex |
|- ( ( ph /\ j e. NN0 ) -> ( ( E ` M ) < j -> ( ( F ` j ) .x. ( j .^ X ) ) = ( 0g ` R ) ) ) |
| 65 |
64
|
ralrimiva |
|- ( ph -> A. j e. NN0 ( ( E ` M ) < j -> ( ( F ` j ) .x. ( j .^ X ) ) = ( 0g ` R ) ) ) |
| 66 |
48 51 65
|
rspcedvdw |
|- ( ph -> E. i e. NN0 A. j e. NN0 ( i < j -> ( ( F ` j ) .x. ( j .^ X ) ) = ( 0g ` R ) ) ) |
| 67 |
42 41 45 66
|
mptnn0fsuppd |
|- ( ph -> ( k e. NN0 |-> ( ( F ` k ) .x. ( k .^ X ) ) ) finSupp ( 0g ` R ) ) |
| 68 |
|
fzouzdisj |
|- ( ( 0 ..^ 4 ) i^i ( ZZ>= ` 4 ) ) = (/) |
| 69 |
68
|
a1i |
|- ( ph -> ( ( 0 ..^ 4 ) i^i ( ZZ>= ` 4 ) ) = (/) ) |
| 70 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 71 |
|
4nn0 |
|- 4 e. NN0 |
| 72 |
71 70
|
eleqtri |
|- 4 e. ( ZZ>= ` 0 ) |
| 73 |
|
fzouzsplit |
|- ( 4 e. ( ZZ>= ` 0 ) -> ( ZZ>= ` 0 ) = ( ( 0 ..^ 4 ) u. ( ZZ>= ` 4 ) ) ) |
| 74 |
72 73
|
ax-mp |
|- ( ZZ>= ` 0 ) = ( ( 0 ..^ 4 ) u. ( ZZ>= ` 4 ) ) |
| 75 |
70 74
|
eqtri |
|- NN0 = ( ( 0 ..^ 4 ) u. ( ZZ>= ` 4 ) ) |
| 76 |
75
|
a1i |
|- ( ph -> NN0 = ( ( 0 ..^ 4 ) u. ( ZZ>= ` 4 ) ) ) |
| 77 |
3 25 6 27 29 41 67 69 76
|
gsumsplit2 |
|- ( ph -> ( R gsum ( k e. NN0 |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) = ( ( R gsum ( k e. ( 0 ..^ 4 ) |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) .+ ( R gsum ( k e. ( ZZ>= ` 4 ) |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) ) ) |
| 78 |
|
fzofi |
|- ( 0 ..^ 4 ) e. Fin |
| 79 |
78
|
a1i |
|- ( ph -> ( 0 ..^ 4 ) e. Fin ) |
| 80 |
|
fzo0ssnn0 |
|- ( 0 ..^ 4 ) C_ NN0 |
| 81 |
80
|
a1i |
|- ( ph -> ( 0 ..^ 4 ) C_ NN0 ) |
| 82 |
81
|
sselda |
|- ( ( ph /\ k e. ( 0 ..^ 4 ) ) -> k e. NN0 ) |
| 83 |
82 41
|
syldan |
|- ( ( ph /\ k e. ( 0 ..^ 4 ) ) -> ( ( F ` k ) .x. ( k .^ X ) ) e. K ) |
| 84 |
|
0ne2 |
|- 0 =/= 2 |
| 85 |
|
1ne2 |
|- 1 =/= 2 |
| 86 |
|
0re |
|- 0 e. RR |
| 87 |
|
3pos |
|- 0 < 3 |
| 88 |
86 87
|
ltneii |
|- 0 =/= 3 |
| 89 |
|
1re |
|- 1 e. RR |
| 90 |
|
1lt3 |
|- 1 < 3 |
| 91 |
89 90
|
ltneii |
|- 1 =/= 3 |
| 92 |
|
disjpr2 |
|- ( ( ( 0 =/= 2 /\ 1 =/= 2 ) /\ ( 0 =/= 3 /\ 1 =/= 3 ) ) -> ( { 0 , 1 } i^i { 2 , 3 } ) = (/) ) |
| 93 |
84 85 88 91 92
|
mp4an |
|- ( { 0 , 1 } i^i { 2 , 3 } ) = (/) |
| 94 |
93
|
a1i |
|- ( ph -> ( { 0 , 1 } i^i { 2 , 3 } ) = (/) ) |
| 95 |
|
fzo0to42pr |
|- ( 0 ..^ 4 ) = ( { 0 , 1 } u. { 2 , 3 } ) |
| 96 |
95
|
a1i |
|- ( ph -> ( 0 ..^ 4 ) = ( { 0 , 1 } u. { 2 , 3 } ) ) |
| 97 |
3 6 27 79 83 94 96
|
gsummptfidmsplit |
|- ( ph -> ( R gsum ( k e. ( 0 ..^ 4 ) |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) = ( ( R gsum ( k e. { 0 , 1 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) .+ ( R gsum ( k e. { 2 , 3 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) ) ) |
| 98 |
15
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` 4 ) ) -> M e. U ) |
| 99 |
|
uzss |
|- ( 4 e. ( ZZ>= ` 0 ) -> ( ZZ>= ` 4 ) C_ ( ZZ>= ` 0 ) ) |
| 100 |
72 99
|
ax-mp |
|- ( ZZ>= ` 4 ) C_ ( ZZ>= ` 0 ) |
| 101 |
100 70
|
sseqtrri |
|- ( ZZ>= ` 4 ) C_ NN0 |
| 102 |
101
|
a1i |
|- ( ph -> ( ZZ>= ` 4 ) C_ NN0 ) |
| 103 |
102
|
sselda |
|- ( ( ph /\ k e. ( ZZ>= ` 4 ) ) -> k e. NN0 ) |
| 104 |
16
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` 4 ) ) -> ( E ` M ) = 3 ) |
| 105 |
|
3p1e4 |
|- ( 3 + 1 ) = 4 |
| 106 |
105
|
fveq2i |
|- ( ZZ>= ` ( 3 + 1 ) ) = ( ZZ>= ` 4 ) |
| 107 |
106
|
eleq2i |
|- ( k e. ( ZZ>= ` ( 3 + 1 ) ) <-> k e. ( ZZ>= ` 4 ) ) |
| 108 |
|
3z |
|- 3 e. ZZ |
| 109 |
|
eluzp1l |
|- ( ( 3 e. ZZ /\ k e. ( ZZ>= ` ( 3 + 1 ) ) ) -> 3 < k ) |
| 110 |
108 109
|
mpan |
|- ( k e. ( ZZ>= ` ( 3 + 1 ) ) -> 3 < k ) |
| 111 |
107 110
|
sylbir |
|- ( k e. ( ZZ>= ` 4 ) -> 3 < k ) |
| 112 |
111
|
adantl |
|- ( ( ph /\ k e. ( ZZ>= ` 4 ) ) -> 3 < k ) |
| 113 |
104 112
|
eqbrtrd |
|- ( ( ph /\ k e. ( ZZ>= ` 4 ) ) -> ( E ` M ) < k ) |
| 114 |
9 1 4 25 8
|
deg1lt |
|- ( ( M e. U /\ k e. NN0 /\ ( E ` M ) < k ) -> ( F ` k ) = ( 0g ` R ) ) |
| 115 |
98 103 113 114
|
syl3anc |
|- ( ( ph /\ k e. ( ZZ>= ` 4 ) ) -> ( F ` k ) = ( 0g ` R ) ) |
| 116 |
115
|
oveq1d |
|- ( ( ph /\ k e. ( ZZ>= ` 4 ) ) -> ( ( F ` k ) .x. ( k .^ X ) ) = ( ( 0g ` R ) .x. ( k .^ X ) ) ) |
| 117 |
26
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` 4 ) ) -> R e. Ring ) |
| 118 |
117 35
|
syl |
|- ( ( ph /\ k e. ( ZZ>= ` 4 ) ) -> ( mulGrp ` R ) e. Mnd ) |
| 119 |
17
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` 4 ) ) -> X e. K ) |
| 120 |
34 7 118 103 119
|
mulgnn0cld |
|- ( ( ph /\ k e. ( ZZ>= ` 4 ) ) -> ( k .^ X ) e. K ) |
| 121 |
3 5 25 117 120
|
ringlzd |
|- ( ( ph /\ k e. ( ZZ>= ` 4 ) ) -> ( ( 0g ` R ) .x. ( k .^ X ) ) = ( 0g ` R ) ) |
| 122 |
116 121
|
eqtrd |
|- ( ( ph /\ k e. ( ZZ>= ` 4 ) ) -> ( ( F ` k ) .x. ( k .^ X ) ) = ( 0g ` R ) ) |
| 123 |
122
|
mpteq2dva |
|- ( ph -> ( k e. ( ZZ>= ` 4 ) |-> ( ( F ` k ) .x. ( k .^ X ) ) ) = ( k e. ( ZZ>= ` 4 ) |-> ( 0g ` R ) ) ) |
| 124 |
123
|
oveq2d |
|- ( ph -> ( R gsum ( k e. ( ZZ>= ` 4 ) |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) = ( R gsum ( k e. ( ZZ>= ` 4 ) |-> ( 0g ` R ) ) ) ) |
| 125 |
97 124
|
oveq12d |
|- ( ph -> ( ( R gsum ( k e. ( 0 ..^ 4 ) |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) .+ ( R gsum ( k e. ( ZZ>= ` 4 ) |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) ) = ( ( ( R gsum ( k e. { 0 , 1 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) .+ ( R gsum ( k e. { 2 , 3 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) ) .+ ( R gsum ( k e. ( ZZ>= ` 4 ) |-> ( 0g ` R ) ) ) ) ) |
| 126 |
|
0nn0 |
|- 0 e. NN0 |
| 127 |
126
|
a1i |
|- ( ph -> 0 e. NN0 ) |
| 128 |
|
1nn0 |
|- 1 e. NN0 |
| 129 |
128
|
a1i |
|- ( ph -> 1 e. NN0 ) |
| 130 |
|
0ne1 |
|- 0 =/= 1 |
| 131 |
130
|
a1i |
|- ( ph -> 0 =/= 1 ) |
| 132 |
8 4 1 3
|
coe1fvalcl |
|- ( ( M e. U /\ 0 e. NN0 ) -> ( F ` 0 ) e. K ) |
| 133 |
15 126 132
|
sylancl |
|- ( ph -> ( F ` 0 ) e. K ) |
| 134 |
34 7 36 127 17
|
mulgnn0cld |
|- ( ph -> ( 0 .^ X ) e. K ) |
| 135 |
3 5 26 133 134
|
ringcld |
|- ( ph -> ( ( F ` 0 ) .x. ( 0 .^ X ) ) e. K ) |
| 136 |
8 4 1 3
|
coe1fvalcl |
|- ( ( M e. U /\ 1 e. NN0 ) -> ( F ` 1 ) e. K ) |
| 137 |
15 128 136
|
sylancl |
|- ( ph -> ( F ` 1 ) e. K ) |
| 138 |
34 7 36 129 17
|
mulgnn0cld |
|- ( ph -> ( 1 .^ X ) e. K ) |
| 139 |
3 5 26 137 138
|
ringcld |
|- ( ph -> ( ( F ` 1 ) .x. ( 1 .^ X ) ) e. K ) |
| 140 |
|
fveq2 |
|- ( k = 0 -> ( F ` k ) = ( F ` 0 ) ) |
| 141 |
|
oveq1 |
|- ( k = 0 -> ( k .^ X ) = ( 0 .^ X ) ) |
| 142 |
140 141
|
oveq12d |
|- ( k = 0 -> ( ( F ` k ) .x. ( k .^ X ) ) = ( ( F ` 0 ) .x. ( 0 .^ X ) ) ) |
| 143 |
|
fveq2 |
|- ( k = 1 -> ( F ` k ) = ( F ` 1 ) ) |
| 144 |
|
oveq1 |
|- ( k = 1 -> ( k .^ X ) = ( 1 .^ X ) ) |
| 145 |
143 144
|
oveq12d |
|- ( k = 1 -> ( ( F ` k ) .x. ( k .^ X ) ) = ( ( F ` 1 ) .x. ( 1 .^ X ) ) ) |
| 146 |
3 6 142 145
|
gsumpr |
|- ( ( R e. CMnd /\ ( 0 e. NN0 /\ 1 e. NN0 /\ 0 =/= 1 ) /\ ( ( ( F ` 0 ) .x. ( 0 .^ X ) ) e. K /\ ( ( F ` 1 ) .x. ( 1 .^ X ) ) e. K ) ) -> ( R gsum ( k e. { 0 , 1 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) = ( ( ( F ` 0 ) .x. ( 0 .^ X ) ) .+ ( ( F ` 1 ) .x. ( 1 .^ X ) ) ) ) |
| 147 |
27 127 129 131 135 139 146
|
syl132anc |
|- ( ph -> ( R gsum ( k e. { 0 , 1 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) = ( ( ( F ` 0 ) .x. ( 0 .^ X ) ) .+ ( ( F ` 1 ) .x. ( 1 .^ X ) ) ) ) |
| 148 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 149 |
13 133
|
eqeltrid |
|- ( ph -> D e. K ) |
| 150 |
3 5 148 26 149
|
ringridmd |
|- ( ph -> ( D .x. ( 1r ` R ) ) = D ) |
| 151 |
150
|
oveq1d |
|- ( ph -> ( ( D .x. ( 1r ` R ) ) .+ ( C .x. X ) ) = ( D .+ ( C .x. X ) ) ) |
| 152 |
13
|
a1i |
|- ( ph -> D = ( F ` 0 ) ) |
| 153 |
33 148
|
ringidval |
|- ( 1r ` R ) = ( 0g ` ( mulGrp ` R ) ) |
| 154 |
34 153 7
|
mulg0 |
|- ( X e. K -> ( 0 .^ X ) = ( 1r ` R ) ) |
| 155 |
17 154
|
syl |
|- ( ph -> ( 0 .^ X ) = ( 1r ` R ) ) |
| 156 |
155
|
eqcomd |
|- ( ph -> ( 1r ` R ) = ( 0 .^ X ) ) |
| 157 |
152 156
|
oveq12d |
|- ( ph -> ( D .x. ( 1r ` R ) ) = ( ( F ` 0 ) .x. ( 0 .^ X ) ) ) |
| 158 |
12
|
a1i |
|- ( ph -> C = ( F ` 1 ) ) |
| 159 |
34 7
|
mulg1 |
|- ( X e. K -> ( 1 .^ X ) = X ) |
| 160 |
17 159
|
syl |
|- ( ph -> ( 1 .^ X ) = X ) |
| 161 |
160
|
eqcomd |
|- ( ph -> X = ( 1 .^ X ) ) |
| 162 |
158 161
|
oveq12d |
|- ( ph -> ( C .x. X ) = ( ( F ` 1 ) .x. ( 1 .^ X ) ) ) |
| 163 |
157 162
|
oveq12d |
|- ( ph -> ( ( D .x. ( 1r ` R ) ) .+ ( C .x. X ) ) = ( ( ( F ` 0 ) .x. ( 0 .^ X ) ) .+ ( ( F ` 1 ) .x. ( 1 .^ X ) ) ) ) |
| 164 |
162 139
|
eqeltrd |
|- ( ph -> ( C .x. X ) e. K ) |
| 165 |
3 6
|
ringcom |
|- ( ( R e. Ring /\ D e. K /\ ( C .x. X ) e. K ) -> ( D .+ ( C .x. X ) ) = ( ( C .x. X ) .+ D ) ) |
| 166 |
26 149 164 165
|
syl3anc |
|- ( ph -> ( D .+ ( C .x. X ) ) = ( ( C .x. X ) .+ D ) ) |
| 167 |
151 163 166
|
3eqtr3d |
|- ( ph -> ( ( ( F ` 0 ) .x. ( 0 .^ X ) ) .+ ( ( F ` 1 ) .x. ( 1 .^ X ) ) ) = ( ( C .x. X ) .+ D ) ) |
| 168 |
147 167
|
eqtrd |
|- ( ph -> ( R gsum ( k e. { 0 , 1 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) = ( ( C .x. X ) .+ D ) ) |
| 169 |
|
2nn0 |
|- 2 e. NN0 |
| 170 |
169
|
a1i |
|- ( ph -> 2 e. NN0 ) |
| 171 |
|
2re |
|- 2 e. RR |
| 172 |
|
2lt3 |
|- 2 < 3 |
| 173 |
171 172
|
ltneii |
|- 2 =/= 3 |
| 174 |
173
|
a1i |
|- ( ph -> 2 =/= 3 ) |
| 175 |
8 4 1 3
|
coe1fvalcl |
|- ( ( M e. U /\ 2 e. NN0 ) -> ( F ` 2 ) e. K ) |
| 176 |
15 169 175
|
sylancl |
|- ( ph -> ( F ` 2 ) e. K ) |
| 177 |
11 176
|
eqeltrid |
|- ( ph -> B e. K ) |
| 178 |
34 7 36 170 17
|
mulgnn0cld |
|- ( ph -> ( 2 .^ X ) e. K ) |
| 179 |
3 5 26 177 178
|
ringcld |
|- ( ph -> ( B .x. ( 2 .^ X ) ) e. K ) |
| 180 |
8 4 1 3
|
coe1fvalcl |
|- ( ( M e. U /\ 3 e. NN0 ) -> ( F ` 3 ) e. K ) |
| 181 |
15 49 180
|
sylancl |
|- ( ph -> ( F ` 3 ) e. K ) |
| 182 |
10 181
|
eqeltrid |
|- ( ph -> A e. K ) |
| 183 |
34 7 36 50 17
|
mulgnn0cld |
|- ( ph -> ( 3 .^ X ) e. K ) |
| 184 |
3 5 26 182 183
|
ringcld |
|- ( ph -> ( A .x. ( 3 .^ X ) ) e. K ) |
| 185 |
|
fveq2 |
|- ( k = 2 -> ( F ` k ) = ( F ` 2 ) ) |
| 186 |
185 11
|
eqtr4di |
|- ( k = 2 -> ( F ` k ) = B ) |
| 187 |
|
oveq1 |
|- ( k = 2 -> ( k .^ X ) = ( 2 .^ X ) ) |
| 188 |
186 187
|
oveq12d |
|- ( k = 2 -> ( ( F ` k ) .x. ( k .^ X ) ) = ( B .x. ( 2 .^ X ) ) ) |
| 189 |
|
fveq2 |
|- ( k = 3 -> ( F ` k ) = ( F ` 3 ) ) |
| 190 |
189 10
|
eqtr4di |
|- ( k = 3 -> ( F ` k ) = A ) |
| 191 |
|
oveq1 |
|- ( k = 3 -> ( k .^ X ) = ( 3 .^ X ) ) |
| 192 |
190 191
|
oveq12d |
|- ( k = 3 -> ( ( F ` k ) .x. ( k .^ X ) ) = ( A .x. ( 3 .^ X ) ) ) |
| 193 |
3 6 188 192
|
gsumpr |
|- ( ( R e. CMnd /\ ( 2 e. NN0 /\ 3 e. NN0 /\ 2 =/= 3 ) /\ ( ( B .x. ( 2 .^ X ) ) e. K /\ ( A .x. ( 3 .^ X ) ) e. K ) ) -> ( R gsum ( k e. { 2 , 3 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) = ( ( B .x. ( 2 .^ X ) ) .+ ( A .x. ( 3 .^ X ) ) ) ) |
| 194 |
27 170 50 174 179 184 193
|
syl132anc |
|- ( ph -> ( R gsum ( k e. { 2 , 3 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) = ( ( B .x. ( 2 .^ X ) ) .+ ( A .x. ( 3 .^ X ) ) ) ) |
| 195 |
3 6
|
cmncom |
|- ( ( R e. CMnd /\ ( B .x. ( 2 .^ X ) ) e. K /\ ( A .x. ( 3 .^ X ) ) e. K ) -> ( ( B .x. ( 2 .^ X ) ) .+ ( A .x. ( 3 .^ X ) ) ) = ( ( A .x. ( 3 .^ X ) ) .+ ( B .x. ( 2 .^ X ) ) ) ) |
| 196 |
27 179 184 195
|
syl3anc |
|- ( ph -> ( ( B .x. ( 2 .^ X ) ) .+ ( A .x. ( 3 .^ X ) ) ) = ( ( A .x. ( 3 .^ X ) ) .+ ( B .x. ( 2 .^ X ) ) ) ) |
| 197 |
194 196
|
eqtrd |
|- ( ph -> ( R gsum ( k e. { 2 , 3 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) = ( ( A .x. ( 3 .^ X ) ) .+ ( B .x. ( 2 .^ X ) ) ) ) |
| 198 |
168 197
|
oveq12d |
|- ( ph -> ( ( R gsum ( k e. { 0 , 1 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) .+ ( R gsum ( k e. { 2 , 3 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) ) = ( ( ( C .x. X ) .+ D ) .+ ( ( A .x. ( 3 .^ X ) ) .+ ( B .x. ( 2 .^ X ) ) ) ) ) |
| 199 |
14
|
crnggrpd |
|- ( ph -> R e. Grp ) |
| 200 |
3 6 199 164 149
|
grpcld |
|- ( ph -> ( ( C .x. X ) .+ D ) e. K ) |
| 201 |
3 6 199 184 179
|
grpcld |
|- ( ph -> ( ( A .x. ( 3 .^ X ) ) .+ ( B .x. ( 2 .^ X ) ) ) e. K ) |
| 202 |
3 6
|
cmncom |
|- ( ( R e. CMnd /\ ( ( C .x. X ) .+ D ) e. K /\ ( ( A .x. ( 3 .^ X ) ) .+ ( B .x. ( 2 .^ X ) ) ) e. K ) -> ( ( ( C .x. X ) .+ D ) .+ ( ( A .x. ( 3 .^ X ) ) .+ ( B .x. ( 2 .^ X ) ) ) ) = ( ( ( A .x. ( 3 .^ X ) ) .+ ( B .x. ( 2 .^ X ) ) ) .+ ( ( C .x. X ) .+ D ) ) ) |
| 203 |
27 200 201 202
|
syl3anc |
|- ( ph -> ( ( ( C .x. X ) .+ D ) .+ ( ( A .x. ( 3 .^ X ) ) .+ ( B .x. ( 2 .^ X ) ) ) ) = ( ( ( A .x. ( 3 .^ X ) ) .+ ( B .x. ( 2 .^ X ) ) ) .+ ( ( C .x. X ) .+ D ) ) ) |
| 204 |
198 203
|
eqtrd |
|- ( ph -> ( ( R gsum ( k e. { 0 , 1 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) .+ ( R gsum ( k e. { 2 , 3 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) ) = ( ( ( A .x. ( 3 .^ X ) ) .+ ( B .x. ( 2 .^ X ) ) ) .+ ( ( C .x. X ) .+ D ) ) ) |
| 205 |
199
|
grpmndd |
|- ( ph -> R e. Mnd ) |
| 206 |
|
fvexd |
|- ( ph -> ( ZZ>= ` 4 ) e. _V ) |
| 207 |
25
|
gsumz |
|- ( ( R e. Mnd /\ ( ZZ>= ` 4 ) e. _V ) -> ( R gsum ( k e. ( ZZ>= ` 4 ) |-> ( 0g ` R ) ) ) = ( 0g ` R ) ) |
| 208 |
205 206 207
|
syl2anc |
|- ( ph -> ( R gsum ( k e. ( ZZ>= ` 4 ) |-> ( 0g ` R ) ) ) = ( 0g ` R ) ) |
| 209 |
204 208
|
oveq12d |
|- ( ph -> ( ( ( R gsum ( k e. { 0 , 1 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) .+ ( R gsum ( k e. { 2 , 3 } |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) ) .+ ( R gsum ( k e. ( ZZ>= ` 4 ) |-> ( 0g ` R ) ) ) ) = ( ( ( ( A .x. ( 3 .^ X ) ) .+ ( B .x. ( 2 .^ X ) ) ) .+ ( ( C .x. X ) .+ D ) ) .+ ( 0g ` R ) ) ) |
| 210 |
3 6 199 201 200
|
grpcld |
|- ( ph -> ( ( ( A .x. ( 3 .^ X ) ) .+ ( B .x. ( 2 .^ X ) ) ) .+ ( ( C .x. X ) .+ D ) ) e. K ) |
| 211 |
3 6 25 199 210
|
grpridd |
|- ( ph -> ( ( ( ( A .x. ( 3 .^ X ) ) .+ ( B .x. ( 2 .^ X ) ) ) .+ ( ( C .x. X ) .+ D ) ) .+ ( 0g ` R ) ) = ( ( ( A .x. ( 3 .^ X ) ) .+ ( B .x. ( 2 .^ X ) ) ) .+ ( ( C .x. X ) .+ D ) ) ) |
| 212 |
125 209 211
|
3eqtrd |
|- ( ph -> ( ( R gsum ( k e. ( 0 ..^ 4 ) |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) .+ ( R gsum ( k e. ( ZZ>= ` 4 ) |-> ( ( F ` k ) .x. ( k .^ X ) ) ) ) ) = ( ( ( A .x. ( 3 .^ X ) ) .+ ( B .x. ( 2 .^ X ) ) ) .+ ( ( C .x. X ) .+ D ) ) ) |
| 213 |
24 77 212
|
3eqtrd |
|- ( ph -> ( ( O ` M ) ` X ) = ( ( ( A .x. ( 3 .^ X ) ) .+ ( B .x. ( 2 .^ X ) ) ) .+ ( ( C .x. X ) .+ D ) ) ) |