Metamath Proof Explorer


Theorem ressasclcl

Description: Closure of the univariate polynomial evaluation for scalars. (Contributed by Thierry Arnoux, 22-Jun-2025)

Ref Expression
Hypotheses ressasclcl.w
|- W = ( Poly1 ` U )
ressasclcl.u
|- U = ( S |`s R )
ressasclcl.a
|- A = ( algSc ` W )
ressasclcl.1
|- B = ( Base ` W )
ressasclcl.s
|- ( ph -> S e. CRing )
ressasclcl.r
|- ( ph -> R e. ( SubRing ` S ) )
ressasclcl.x
|- ( ph -> X e. R )
Assertion ressasclcl
|- ( ph -> ( A ` X ) e. B )

Proof

Step Hyp Ref Expression
1 ressasclcl.w
 |-  W = ( Poly1 ` U )
2 ressasclcl.u
 |-  U = ( S |`s R )
3 ressasclcl.a
 |-  A = ( algSc ` W )
4 ressasclcl.1
 |-  B = ( Base ` W )
5 ressasclcl.s
 |-  ( ph -> S e. CRing )
6 ressasclcl.r
 |-  ( ph -> R e. ( SubRing ` S ) )
7 ressasclcl.x
 |-  ( ph -> X e. R )
8 eqid
 |-  ( Base ` S ) = ( Base ` S )
9 8 subrgss
 |-  ( R e. ( SubRing ` S ) -> R C_ ( Base ` S ) )
10 2 8 ressbas2
 |-  ( R C_ ( Base ` S ) -> R = ( Base ` U ) )
11 6 9 10 3syl
 |-  ( ph -> R = ( Base ` U ) )
12 2 subrgcrng
 |-  ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> U e. CRing )
13 5 6 12 syl2anc
 |-  ( ph -> U e. CRing )
14 1 ply1sca
 |-  ( U e. CRing -> U = ( Scalar ` W ) )
15 13 14 syl
 |-  ( ph -> U = ( Scalar ` W ) )
16 15 fveq2d
 |-  ( ph -> ( Base ` U ) = ( Base ` ( Scalar ` W ) ) )
17 11 16 eqtrd
 |-  ( ph -> R = ( Base ` ( Scalar ` W ) ) )
18 7 17 eleqtrd
 |-  ( ph -> X e. ( Base ` ( Scalar ` W ) ) )
19 eqid
 |-  ( Scalar ` W ) = ( Scalar ` W )
20 eqid
 |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) )
21 eqid
 |-  ( .s ` W ) = ( .s ` W )
22 eqid
 |-  ( 1r ` W ) = ( 1r ` W )
23 3 19 20 21 22 asclval
 |-  ( X e. ( Base ` ( Scalar ` W ) ) -> ( A ` X ) = ( X ( .s ` W ) ( 1r ` W ) ) )
24 18 23 syl
 |-  ( ph -> ( A ` X ) = ( X ( .s ` W ) ( 1r ` W ) ) )
25 13 crngringd
 |-  ( ph -> U e. Ring )
26 1 ply1lmod
 |-  ( U e. Ring -> W e. LMod )
27 25 26 syl
 |-  ( ph -> W e. LMod )
28 1 ply1ring
 |-  ( U e. Ring -> W e. Ring )
29 4 22 ringidcl
 |-  ( W e. Ring -> ( 1r ` W ) e. B )
30 25 28 29 3syl
 |-  ( ph -> ( 1r ` W ) e. B )
31 4 19 21 20 27 18 30 lmodvscld
 |-  ( ph -> ( X ( .s ` W ) ( 1r ` W ) ) e. B )
32 24 31 eqeltrd
 |-  ( ph -> ( A ` X ) e. B )