Metamath Proof Explorer


Theorem ressasclcl

Description: Closure of the univariate polynomial evaluation for scalars. (Contributed by Thierry Arnoux, 22-Jun-2025)

Ref Expression
Hypotheses ressasclcl.w W = Poly 1 U
ressasclcl.u U = S 𝑠 R
ressasclcl.a A = algSc W
ressasclcl.1 B = Base W
ressasclcl.s φ S CRing
ressasclcl.r φ R SubRing S
ressasclcl.x φ X R
Assertion ressasclcl φ A X B

Proof

Step Hyp Ref Expression
1 ressasclcl.w W = Poly 1 U
2 ressasclcl.u U = S 𝑠 R
3 ressasclcl.a A = algSc W
4 ressasclcl.1 B = Base W
5 ressasclcl.s φ S CRing
6 ressasclcl.r φ R SubRing S
7 ressasclcl.x φ X R
8 eqid Base S = Base S
9 8 subrgss R SubRing S R Base S
10 2 8 ressbas2 R Base S R = Base U
11 6 9 10 3syl φ R = Base U
12 2 subrgcrng S CRing R SubRing S U CRing
13 5 6 12 syl2anc φ U CRing
14 1 ply1sca U CRing U = Scalar W
15 13 14 syl φ U = Scalar W
16 15 fveq2d φ Base U = Base Scalar W
17 11 16 eqtrd φ R = Base Scalar W
18 7 17 eleqtrd φ X Base Scalar W
19 eqid Scalar W = Scalar W
20 eqid Base Scalar W = Base Scalar W
21 eqid W = W
22 eqid 1 W = 1 W
23 3 19 20 21 22 asclval X Base Scalar W A X = X W 1 W
24 18 23 syl φ A X = X W 1 W
25 13 crngringd φ U Ring
26 1 ply1lmod U Ring W LMod
27 25 26 syl φ W LMod
28 1 ply1ring U Ring W Ring
29 4 22 ringidcl W Ring 1 W B
30 25 28 29 3syl φ 1 W B
31 4 19 21 20 27 18 30 lmodvscld φ X W 1 W B
32 24 31 eqeltrd φ A X B