Metamath Proof Explorer


Theorem ressasclcl

Description: Closure of the univariate polynomial evaluation for scalars. (Contributed by Thierry Arnoux, 22-Jun-2025)

Ref Expression
Hypotheses ressasclcl.w 𝑊 = ( Poly1𝑈 )
ressasclcl.u 𝑈 = ( 𝑆s 𝑅 )
ressasclcl.a 𝐴 = ( algSc ‘ 𝑊 )
ressasclcl.1 𝐵 = ( Base ‘ 𝑊 )
ressasclcl.s ( 𝜑𝑆 ∈ CRing )
ressasclcl.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
ressasclcl.x ( 𝜑𝑋𝑅 )
Assertion ressasclcl ( 𝜑 → ( 𝐴𝑋 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 ressasclcl.w 𝑊 = ( Poly1𝑈 )
2 ressasclcl.u 𝑈 = ( 𝑆s 𝑅 )
3 ressasclcl.a 𝐴 = ( algSc ‘ 𝑊 )
4 ressasclcl.1 𝐵 = ( Base ‘ 𝑊 )
5 ressasclcl.s ( 𝜑𝑆 ∈ CRing )
6 ressasclcl.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
7 ressasclcl.x ( 𝜑𝑋𝑅 )
8 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
9 8 subrgss ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ ( Base ‘ 𝑆 ) )
10 2 8 ressbas2 ( 𝑅 ⊆ ( Base ‘ 𝑆 ) → 𝑅 = ( Base ‘ 𝑈 ) )
11 6 9 10 3syl ( 𝜑𝑅 = ( Base ‘ 𝑈 ) )
12 2 subrgcrng ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑈 ∈ CRing )
13 5 6 12 syl2anc ( 𝜑𝑈 ∈ CRing )
14 1 ply1sca ( 𝑈 ∈ CRing → 𝑈 = ( Scalar ‘ 𝑊 ) )
15 13 14 syl ( 𝜑𝑈 = ( Scalar ‘ 𝑊 ) )
16 15 fveq2d ( 𝜑 → ( Base ‘ 𝑈 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
17 11 16 eqtrd ( 𝜑𝑅 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
18 7 17 eleqtrd ( 𝜑𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
19 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
20 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
21 eqid ( ·𝑠𝑊 ) = ( ·𝑠𝑊 )
22 eqid ( 1r𝑊 ) = ( 1r𝑊 )
23 3 19 20 21 22 asclval ( 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) → ( 𝐴𝑋 ) = ( 𝑋 ( ·𝑠𝑊 ) ( 1r𝑊 ) ) )
24 18 23 syl ( 𝜑 → ( 𝐴𝑋 ) = ( 𝑋 ( ·𝑠𝑊 ) ( 1r𝑊 ) ) )
25 13 crngringd ( 𝜑𝑈 ∈ Ring )
26 1 ply1lmod ( 𝑈 ∈ Ring → 𝑊 ∈ LMod )
27 25 26 syl ( 𝜑𝑊 ∈ LMod )
28 1 ply1ring ( 𝑈 ∈ Ring → 𝑊 ∈ Ring )
29 4 22 ringidcl ( 𝑊 ∈ Ring → ( 1r𝑊 ) ∈ 𝐵 )
30 25 28 29 3syl ( 𝜑 → ( 1r𝑊 ) ∈ 𝐵 )
31 4 19 21 20 27 18 30 lmodvscld ( 𝜑 → ( 𝑋 ( ·𝑠𝑊 ) ( 1r𝑊 ) ) ∈ 𝐵 )
32 24 31 eqeltrd ( 𝜑 → ( 𝐴𝑋 ) ∈ 𝐵 )