Step |
Hyp |
Ref |
Expression |
1 |
|
ressasclcl.w |
⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) |
2 |
|
ressasclcl.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
3 |
|
ressasclcl.a |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
4 |
|
ressasclcl.1 |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
5 |
|
ressasclcl.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
6 |
|
ressasclcl.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
7 |
|
ressasclcl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑅 ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
9 |
8
|
subrgss |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ ( Base ‘ 𝑆 ) ) |
10 |
2 8
|
ressbas2 |
⊢ ( 𝑅 ⊆ ( Base ‘ 𝑆 ) → 𝑅 = ( Base ‘ 𝑈 ) ) |
11 |
6 9 10
|
3syl |
⊢ ( 𝜑 → 𝑅 = ( Base ‘ 𝑈 ) ) |
12 |
2
|
subrgcrng |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑈 ∈ CRing ) |
13 |
5 6 12
|
syl2anc |
⊢ ( 𝜑 → 𝑈 ∈ CRing ) |
14 |
1
|
ply1sca |
⊢ ( 𝑈 ∈ CRing → 𝑈 = ( Scalar ‘ 𝑊 ) ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → 𝑈 = ( Scalar ‘ 𝑊 ) ) |
16 |
15
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑈 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
17 |
11 16
|
eqtrd |
⊢ ( 𝜑 → 𝑅 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
18 |
7 17
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
19 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
20 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
21 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
22 |
|
eqid |
⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) |
23 |
3 19 20 21 22
|
asclval |
⊢ ( 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) → ( 𝐴 ‘ 𝑋 ) = ( 𝑋 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
24 |
18 23
|
syl |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) = ( 𝑋 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
25 |
13
|
crngringd |
⊢ ( 𝜑 → 𝑈 ∈ Ring ) |
26 |
1
|
ply1lmod |
⊢ ( 𝑈 ∈ Ring → 𝑊 ∈ LMod ) |
27 |
25 26
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
28 |
1
|
ply1ring |
⊢ ( 𝑈 ∈ Ring → 𝑊 ∈ Ring ) |
29 |
4 22
|
ringidcl |
⊢ ( 𝑊 ∈ Ring → ( 1r ‘ 𝑊 ) ∈ 𝐵 ) |
30 |
25 28 29
|
3syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑊 ) ∈ 𝐵 ) |
31 |
4 19 21 20 27 18 30
|
lmodvscld |
⊢ ( 𝜑 → ( 𝑋 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ∈ 𝐵 ) |
32 |
24 31
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) ∈ 𝐵 ) |