| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ressply1evl.q |
|- Q = ( S evalSub1 R ) |
| 2 |
|
ressply1evl.k |
|- K = ( Base ` S ) |
| 3 |
|
ressply1evl.w |
|- W = ( Poly1 ` U ) |
| 4 |
|
ressply1evl.u |
|- U = ( S |`s R ) |
| 5 |
|
ressply1evl.b |
|- B = ( Base ` W ) |
| 6 |
|
evls1subd.1 |
|- D = ( -g ` W ) |
| 7 |
|
evls1subd.2 |
|- .- = ( -g ` S ) |
| 8 |
|
evls1subd.s |
|- ( ph -> S e. CRing ) |
| 9 |
|
evls1subd.r |
|- ( ph -> R e. ( SubRing ` S ) ) |
| 10 |
|
evls1subd.m |
|- ( ph -> M e. B ) |
| 11 |
|
evls1subd.n |
|- ( ph -> N e. B ) |
| 12 |
|
evls1subd.y |
|- ( ph -> C e. K ) |
| 13 |
6
|
oveqi |
|- ( M D N ) = ( M ( -g ` W ) N ) |
| 14 |
|
eqid |
|- ( Poly1 ` S ) = ( Poly1 ` S ) |
| 15 |
|
eqid |
|- ( ( Poly1 ` S ) |`s B ) = ( ( Poly1 ` S ) |`s B ) |
| 16 |
14 4 3 5 9 15 10 11
|
ressply1sub |
|- ( ph -> ( M ( -g ` W ) N ) = ( M ( -g ` ( ( Poly1 ` S ) |`s B ) ) N ) ) |
| 17 |
13 16
|
eqtrid |
|- ( ph -> ( M D N ) = ( M ( -g ` ( ( Poly1 ` S ) |`s B ) ) N ) ) |
| 18 |
14 4 3 5
|
subrgply1 |
|- ( R e. ( SubRing ` S ) -> B e. ( SubRing ` ( Poly1 ` S ) ) ) |
| 19 |
|
subrgsubg |
|- ( B e. ( SubRing ` ( Poly1 ` S ) ) -> B e. ( SubGrp ` ( Poly1 ` S ) ) ) |
| 20 |
9 18 19
|
3syl |
|- ( ph -> B e. ( SubGrp ` ( Poly1 ` S ) ) ) |
| 21 |
|
eqid |
|- ( -g ` ( Poly1 ` S ) ) = ( -g ` ( Poly1 ` S ) ) |
| 22 |
|
eqid |
|- ( -g ` ( ( Poly1 ` S ) |`s B ) ) = ( -g ` ( ( Poly1 ` S ) |`s B ) ) |
| 23 |
21 15 22
|
subgsub |
|- ( ( B e. ( SubGrp ` ( Poly1 ` S ) ) /\ M e. B /\ N e. B ) -> ( M ( -g ` ( Poly1 ` S ) ) N ) = ( M ( -g ` ( ( Poly1 ` S ) |`s B ) ) N ) ) |
| 24 |
20 10 11 23
|
syl3anc |
|- ( ph -> ( M ( -g ` ( Poly1 ` S ) ) N ) = ( M ( -g ` ( ( Poly1 ` S ) |`s B ) ) N ) ) |
| 25 |
17 24
|
eqtr4d |
|- ( ph -> ( M D N ) = ( M ( -g ` ( Poly1 ` S ) ) N ) ) |
| 26 |
25
|
fveq2d |
|- ( ph -> ( ( eval1 ` S ) ` ( M D N ) ) = ( ( eval1 ` S ) ` ( M ( -g ` ( Poly1 ` S ) ) N ) ) ) |
| 27 |
26
|
fveq1d |
|- ( ph -> ( ( ( eval1 ` S ) ` ( M D N ) ) ` C ) = ( ( ( eval1 ` S ) ` ( M ( -g ` ( Poly1 ` S ) ) N ) ) ` C ) ) |
| 28 |
|
eqid |
|- ( eval1 ` S ) = ( eval1 ` S ) |
| 29 |
1 2 3 4 5 28 8 9
|
ressply1evl |
|- ( ph -> Q = ( ( eval1 ` S ) |` B ) ) |
| 30 |
29
|
fveq1d |
|- ( ph -> ( Q ` ( M D N ) ) = ( ( ( eval1 ` S ) |` B ) ` ( M D N ) ) ) |
| 31 |
4
|
subrgring |
|- ( R e. ( SubRing ` S ) -> U e. Ring ) |
| 32 |
3
|
ply1ring |
|- ( U e. Ring -> W e. Ring ) |
| 33 |
9 31 32
|
3syl |
|- ( ph -> W e. Ring ) |
| 34 |
33
|
ringgrpd |
|- ( ph -> W e. Grp ) |
| 35 |
5 6
|
grpsubcl |
|- ( ( W e. Grp /\ M e. B /\ N e. B ) -> ( M D N ) e. B ) |
| 36 |
34 10 11 35
|
syl3anc |
|- ( ph -> ( M D N ) e. B ) |
| 37 |
36
|
fvresd |
|- ( ph -> ( ( ( eval1 ` S ) |` B ) ` ( M D N ) ) = ( ( eval1 ` S ) ` ( M D N ) ) ) |
| 38 |
30 37
|
eqtr2d |
|- ( ph -> ( ( eval1 ` S ) ` ( M D N ) ) = ( Q ` ( M D N ) ) ) |
| 39 |
38
|
fveq1d |
|- ( ph -> ( ( ( eval1 ` S ) ` ( M D N ) ) ` C ) = ( ( Q ` ( M D N ) ) ` C ) ) |
| 40 |
|
eqid |
|- ( Base ` ( Poly1 ` S ) ) = ( Base ` ( Poly1 ` S ) ) |
| 41 |
|
eqid |
|- ( PwSer1 ` U ) = ( PwSer1 ` U ) |
| 42 |
|
eqid |
|- ( Base ` ( PwSer1 ` U ) ) = ( Base ` ( PwSer1 ` U ) ) |
| 43 |
14 4 3 5 9 41 42 40
|
ressply1bas2 |
|- ( ph -> B = ( ( Base ` ( PwSer1 ` U ) ) i^i ( Base ` ( Poly1 ` S ) ) ) ) |
| 44 |
|
inss2 |
|- ( ( Base ` ( PwSer1 ` U ) ) i^i ( Base ` ( Poly1 ` S ) ) ) C_ ( Base ` ( Poly1 ` S ) ) |
| 45 |
43 44
|
eqsstrdi |
|- ( ph -> B C_ ( Base ` ( Poly1 ` S ) ) ) |
| 46 |
45 10
|
sseldd |
|- ( ph -> M e. ( Base ` ( Poly1 ` S ) ) ) |
| 47 |
29
|
fveq1d |
|- ( ph -> ( Q ` M ) = ( ( ( eval1 ` S ) |` B ) ` M ) ) |
| 48 |
10
|
fvresd |
|- ( ph -> ( ( ( eval1 ` S ) |` B ) ` M ) = ( ( eval1 ` S ) ` M ) ) |
| 49 |
47 48
|
eqtr2d |
|- ( ph -> ( ( eval1 ` S ) ` M ) = ( Q ` M ) ) |
| 50 |
49
|
fveq1d |
|- ( ph -> ( ( ( eval1 ` S ) ` M ) ` C ) = ( ( Q ` M ) ` C ) ) |
| 51 |
46 50
|
jca |
|- ( ph -> ( M e. ( Base ` ( Poly1 ` S ) ) /\ ( ( ( eval1 ` S ) ` M ) ` C ) = ( ( Q ` M ) ` C ) ) ) |
| 52 |
45 11
|
sseldd |
|- ( ph -> N e. ( Base ` ( Poly1 ` S ) ) ) |
| 53 |
29
|
fveq1d |
|- ( ph -> ( Q ` N ) = ( ( ( eval1 ` S ) |` B ) ` N ) ) |
| 54 |
11
|
fvresd |
|- ( ph -> ( ( ( eval1 ` S ) |` B ) ` N ) = ( ( eval1 ` S ) ` N ) ) |
| 55 |
53 54
|
eqtr2d |
|- ( ph -> ( ( eval1 ` S ) ` N ) = ( Q ` N ) ) |
| 56 |
55
|
fveq1d |
|- ( ph -> ( ( ( eval1 ` S ) ` N ) ` C ) = ( ( Q ` N ) ` C ) ) |
| 57 |
52 56
|
jca |
|- ( ph -> ( N e. ( Base ` ( Poly1 ` S ) ) /\ ( ( ( eval1 ` S ) ` N ) ` C ) = ( ( Q ` N ) ` C ) ) ) |
| 58 |
28 14 2 40 8 12 51 57 21 7
|
evl1subd |
|- ( ph -> ( ( M ( -g ` ( Poly1 ` S ) ) N ) e. ( Base ` ( Poly1 ` S ) ) /\ ( ( ( eval1 ` S ) ` ( M ( -g ` ( Poly1 ` S ) ) N ) ) ` C ) = ( ( ( Q ` M ) ` C ) .- ( ( Q ` N ) ` C ) ) ) ) |
| 59 |
58
|
simprd |
|- ( ph -> ( ( ( eval1 ` S ) ` ( M ( -g ` ( Poly1 ` S ) ) N ) ) ` C ) = ( ( ( Q ` M ) ` C ) .- ( ( Q ` N ) ` C ) ) ) |
| 60 |
27 39 59
|
3eqtr3d |
|- ( ph -> ( ( Q ` ( M D N ) ) ` C ) = ( ( ( Q ` M ) ` C ) .- ( ( Q ` N ) ` C ) ) ) |