Step |
Hyp |
Ref |
Expression |
1 |
|
subrgply1.s |
|- S = ( Poly1 ` R ) |
2 |
|
subrgply1.h |
|- H = ( R |`s T ) |
3 |
|
subrgply1.u |
|- U = ( Poly1 ` H ) |
4 |
|
subrgply1.b |
|- B = ( Base ` U ) |
5 |
|
1on |
|- 1o e. On |
6 |
|
eqid |
|- ( 1o mPoly R ) = ( 1o mPoly R ) |
7 |
|
eqid |
|- ( 1o mPoly H ) = ( 1o mPoly H ) |
8 |
|
eqid |
|- ( PwSer1 ` H ) = ( PwSer1 ` H ) |
9 |
3 8 4
|
ply1bas |
|- B = ( Base ` ( 1o mPoly H ) ) |
10 |
6 2 7 9
|
subrgmpl |
|- ( ( 1o e. On /\ T e. ( SubRing ` R ) ) -> B e. ( SubRing ` ( 1o mPoly R ) ) ) |
11 |
5 10
|
mpan |
|- ( T e. ( SubRing ` R ) -> B e. ( SubRing ` ( 1o mPoly R ) ) ) |
12 |
|
eqidd |
|- ( T e. ( SubRing ` R ) -> ( Base ` S ) = ( Base ` S ) ) |
13 |
|
eqid |
|- ( PwSer1 ` R ) = ( PwSer1 ` R ) |
14 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
15 |
1 13 14
|
ply1bas |
|- ( Base ` S ) = ( Base ` ( 1o mPoly R ) ) |
16 |
15
|
a1i |
|- ( T e. ( SubRing ` R ) -> ( Base ` S ) = ( Base ` ( 1o mPoly R ) ) ) |
17 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
18 |
1 6 17
|
ply1plusg |
|- ( +g ` S ) = ( +g ` ( 1o mPoly R ) ) |
19 |
18
|
a1i |
|- ( T e. ( SubRing ` R ) -> ( +g ` S ) = ( +g ` ( 1o mPoly R ) ) ) |
20 |
19
|
oveqdr |
|- ( ( T e. ( SubRing ` R ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( x ( +g ` S ) y ) = ( x ( +g ` ( 1o mPoly R ) ) y ) ) |
21 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
22 |
1 6 21
|
ply1mulr |
|- ( .r ` S ) = ( .r ` ( 1o mPoly R ) ) |
23 |
22
|
a1i |
|- ( T e. ( SubRing ` R ) -> ( .r ` S ) = ( .r ` ( 1o mPoly R ) ) ) |
24 |
23
|
oveqdr |
|- ( ( T e. ( SubRing ` R ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( x ( .r ` S ) y ) = ( x ( .r ` ( 1o mPoly R ) ) y ) ) |
25 |
12 16 20 24
|
subrgpropd |
|- ( T e. ( SubRing ` R ) -> ( SubRing ` S ) = ( SubRing ` ( 1o mPoly R ) ) ) |
26 |
11 25
|
eleqtrrd |
|- ( T e. ( SubRing ` R ) -> B e. ( SubRing ` S ) ) |