Metamath Proof Explorer


Theorem subrgply1

Description: A subring of the base ring induces a subring of polynomials. (Contributed by Mario Carneiro, 3-Jul-2015)

Ref Expression
Hypotheses subrgply1.s
|- S = ( Poly1 ` R )
subrgply1.h
|- H = ( R |`s T )
subrgply1.u
|- U = ( Poly1 ` H )
subrgply1.b
|- B = ( Base ` U )
Assertion subrgply1
|- ( T e. ( SubRing ` R ) -> B e. ( SubRing ` S ) )

Proof

Step Hyp Ref Expression
1 subrgply1.s
 |-  S = ( Poly1 ` R )
2 subrgply1.h
 |-  H = ( R |`s T )
3 subrgply1.u
 |-  U = ( Poly1 ` H )
4 subrgply1.b
 |-  B = ( Base ` U )
5 1on
 |-  1o e. On
6 eqid
 |-  ( 1o mPoly R ) = ( 1o mPoly R )
7 eqid
 |-  ( 1o mPoly H ) = ( 1o mPoly H )
8 eqid
 |-  ( PwSer1 ` H ) = ( PwSer1 ` H )
9 3 8 4 ply1bas
 |-  B = ( Base ` ( 1o mPoly H ) )
10 6 2 7 9 subrgmpl
 |-  ( ( 1o e. On /\ T e. ( SubRing ` R ) ) -> B e. ( SubRing ` ( 1o mPoly R ) ) )
11 5 10 mpan
 |-  ( T e. ( SubRing ` R ) -> B e. ( SubRing ` ( 1o mPoly R ) ) )
12 eqidd
 |-  ( T e. ( SubRing ` R ) -> ( Base ` S ) = ( Base ` S ) )
13 eqid
 |-  ( PwSer1 ` R ) = ( PwSer1 ` R )
14 eqid
 |-  ( Base ` S ) = ( Base ` S )
15 1 13 14 ply1bas
 |-  ( Base ` S ) = ( Base ` ( 1o mPoly R ) )
16 15 a1i
 |-  ( T e. ( SubRing ` R ) -> ( Base ` S ) = ( Base ` ( 1o mPoly R ) ) )
17 eqid
 |-  ( +g ` S ) = ( +g ` S )
18 1 6 17 ply1plusg
 |-  ( +g ` S ) = ( +g ` ( 1o mPoly R ) )
19 18 a1i
 |-  ( T e. ( SubRing ` R ) -> ( +g ` S ) = ( +g ` ( 1o mPoly R ) ) )
20 19 oveqdr
 |-  ( ( T e. ( SubRing ` R ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( x ( +g ` S ) y ) = ( x ( +g ` ( 1o mPoly R ) ) y ) )
21 eqid
 |-  ( .r ` S ) = ( .r ` S )
22 1 6 21 ply1mulr
 |-  ( .r ` S ) = ( .r ` ( 1o mPoly R ) )
23 22 a1i
 |-  ( T e. ( SubRing ` R ) -> ( .r ` S ) = ( .r ` ( 1o mPoly R ) ) )
24 23 oveqdr
 |-  ( ( T e. ( SubRing ` R ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( x ( .r ` S ) y ) = ( x ( .r ` ( 1o mPoly R ) ) y ) )
25 12 16 20 24 subrgpropd
 |-  ( T e. ( SubRing ` R ) -> ( SubRing ` S ) = ( SubRing ` ( 1o mPoly R ) ) )
26 11 25 eleqtrrd
 |-  ( T e. ( SubRing ` R ) -> B e. ( SubRing ` S ) )