Metamath Proof Explorer


Theorem gsumply1subr

Description: Evaluate a group sum in a polynomial ring over a subring. (Contributed by AV, 22-Sep-2019) (Proof shortened by AV, 31-Jan-2020)

Ref Expression
Hypotheses subrgply1.s
|- S = ( Poly1 ` R )
subrgply1.h
|- H = ( R |`s T )
subrgply1.u
|- U = ( Poly1 ` H )
subrgply1.b
|- B = ( Base ` U )
gsumply1subr.s
|- ( ph -> T e. ( SubRing ` R ) )
gsumply1subr.a
|- ( ph -> A e. V )
gsumply1subr.f
|- ( ph -> F : A --> B )
Assertion gsumply1subr
|- ( ph -> ( S gsum F ) = ( U gsum F ) )

Proof

Step Hyp Ref Expression
1 subrgply1.s
 |-  S = ( Poly1 ` R )
2 subrgply1.h
 |-  H = ( R |`s T )
3 subrgply1.u
 |-  U = ( Poly1 ` H )
4 subrgply1.b
 |-  B = ( Base ` U )
5 gsumply1subr.s
 |-  ( ph -> T e. ( SubRing ` R ) )
6 gsumply1subr.a
 |-  ( ph -> A e. V )
7 gsumply1subr.f
 |-  ( ph -> F : A --> B )
8 1 2 3 4 subrgply1
 |-  ( T e. ( SubRing ` R ) -> B e. ( SubRing ` S ) )
9 subrgsubg
 |-  ( B e. ( SubRing ` S ) -> B e. ( SubGrp ` S ) )
10 subgsubm
 |-  ( B e. ( SubGrp ` S ) -> B e. ( SubMnd ` S ) )
11 9 10 syl
 |-  ( B e. ( SubRing ` S ) -> B e. ( SubMnd ` S ) )
12 5 8 11 3syl
 |-  ( ph -> B e. ( SubMnd ` S ) )
13 eqid
 |-  ( S |`s B ) = ( S |`s B )
14 6 12 7 13 gsumsubm
 |-  ( ph -> ( S gsum F ) = ( ( S |`s B ) gsum F ) )
15 fex
 |-  ( ( F : A --> B /\ A e. V ) -> F e. _V )
16 7 6 15 syl2anc
 |-  ( ph -> F e. _V )
17 ovexd
 |-  ( ph -> ( S |`s B ) e. _V )
18 3 fvexi
 |-  U e. _V
19 18 a1i
 |-  ( ph -> U e. _V )
20 eqid
 |-  ( Base ` U ) = ( Base ` U )
21 4 oveq2i
 |-  ( S |`s B ) = ( S |`s ( Base ` U ) )
22 1 2 3 20 5 21 ressply1bas
 |-  ( ph -> ( Base ` U ) = ( Base ` ( S |`s B ) ) )
23 22 eqcomd
 |-  ( ph -> ( Base ` ( S |`s B ) ) = ( Base ` U ) )
24 13 subrgring
 |-  ( B e. ( SubRing ` S ) -> ( S |`s B ) e. Ring )
25 8 24 syl
 |-  ( T e. ( SubRing ` R ) -> ( S |`s B ) e. Ring )
26 ringmgm
 |-  ( ( S |`s B ) e. Ring -> ( S |`s B ) e. Mgm )
27 5 25 26 3syl
 |-  ( ph -> ( S |`s B ) e. Mgm )
28 simpl
 |-  ( ( ph /\ ( s e. ( Base ` ( S |`s B ) ) /\ t e. ( Base ` ( S |`s B ) ) ) ) -> ph )
29 1 2 3 4 5 13 ressply1bas
 |-  ( ph -> B = ( Base ` ( S |`s B ) ) )
30 29 eqcomd
 |-  ( ph -> ( Base ` ( S |`s B ) ) = B )
31 30 eleq2d
 |-  ( ph -> ( s e. ( Base ` ( S |`s B ) ) <-> s e. B ) )
32 31 biimpcd
 |-  ( s e. ( Base ` ( S |`s B ) ) -> ( ph -> s e. B ) )
33 32 adantr
 |-  ( ( s e. ( Base ` ( S |`s B ) ) /\ t e. ( Base ` ( S |`s B ) ) ) -> ( ph -> s e. B ) )
34 33 impcom
 |-  ( ( ph /\ ( s e. ( Base ` ( S |`s B ) ) /\ t e. ( Base ` ( S |`s B ) ) ) ) -> s e. B )
35 30 eleq2d
 |-  ( ph -> ( t e. ( Base ` ( S |`s B ) ) <-> t e. B ) )
36 35 biimpcd
 |-  ( t e. ( Base ` ( S |`s B ) ) -> ( ph -> t e. B ) )
37 36 adantl
 |-  ( ( s e. ( Base ` ( S |`s B ) ) /\ t e. ( Base ` ( S |`s B ) ) ) -> ( ph -> t e. B ) )
38 37 impcom
 |-  ( ( ph /\ ( s e. ( Base ` ( S |`s B ) ) /\ t e. ( Base ` ( S |`s B ) ) ) ) -> t e. B )
39 1 2 3 4 5 13 ressply1add
 |-  ( ( ph /\ ( s e. B /\ t e. B ) ) -> ( s ( +g ` U ) t ) = ( s ( +g ` ( S |`s B ) ) t ) )
40 28 34 38 39 syl12anc
 |-  ( ( ph /\ ( s e. ( Base ` ( S |`s B ) ) /\ t e. ( Base ` ( S |`s B ) ) ) ) -> ( s ( +g ` U ) t ) = ( s ( +g ` ( S |`s B ) ) t ) )
41 40 eqcomd
 |-  ( ( ph /\ ( s e. ( Base ` ( S |`s B ) ) /\ t e. ( Base ` ( S |`s B ) ) ) ) -> ( s ( +g ` ( S |`s B ) ) t ) = ( s ( +g ` U ) t ) )
42 7 ffund
 |-  ( ph -> Fun F )
43 7 frnd
 |-  ( ph -> ran F C_ B )
44 43 29 sseqtrd
 |-  ( ph -> ran F C_ ( Base ` ( S |`s B ) ) )
45 16 17 19 23 27 41 42 44 gsummgmpropd
 |-  ( ph -> ( ( S |`s B ) gsum F ) = ( U gsum F ) )
46 14 45 eqtrd
 |-  ( ph -> ( S gsum F ) = ( U gsum F ) )