Metamath Proof Explorer


Theorem gsumply1subr

Description: Evaluate a group sum in a polynomial ring over a subring. (Contributed by AV, 22-Sep-2019) (Proof shortened by AV, 31-Jan-2020)

Ref Expression
Hypotheses subrgply1.s 𝑆 = ( Poly1𝑅 )
subrgply1.h 𝐻 = ( 𝑅s 𝑇 )
subrgply1.u 𝑈 = ( Poly1𝐻 )
subrgply1.b 𝐵 = ( Base ‘ 𝑈 )
gsumply1subr.s ( 𝜑𝑇 ∈ ( SubRing ‘ 𝑅 ) )
gsumply1subr.a ( 𝜑𝐴𝑉 )
gsumply1subr.f ( 𝜑𝐹 : 𝐴𝐵 )
Assertion gsumply1subr ( 𝜑 → ( 𝑆 Σg 𝐹 ) = ( 𝑈 Σg 𝐹 ) )

Proof

Step Hyp Ref Expression
1 subrgply1.s 𝑆 = ( Poly1𝑅 )
2 subrgply1.h 𝐻 = ( 𝑅s 𝑇 )
3 subrgply1.u 𝑈 = ( Poly1𝐻 )
4 subrgply1.b 𝐵 = ( Base ‘ 𝑈 )
5 gsumply1subr.s ( 𝜑𝑇 ∈ ( SubRing ‘ 𝑅 ) )
6 gsumply1subr.a ( 𝜑𝐴𝑉 )
7 gsumply1subr.f ( 𝜑𝐹 : 𝐴𝐵 )
8 1 2 3 4 subrgply1 ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝐵 ∈ ( SubRing ‘ 𝑆 ) )
9 subrgsubg ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) → 𝐵 ∈ ( SubGrp ‘ 𝑆 ) )
10 subgsubm ( 𝐵 ∈ ( SubGrp ‘ 𝑆 ) → 𝐵 ∈ ( SubMnd ‘ 𝑆 ) )
11 9 10 syl ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) → 𝐵 ∈ ( SubMnd ‘ 𝑆 ) )
12 5 8 11 3syl ( 𝜑𝐵 ∈ ( SubMnd ‘ 𝑆 ) )
13 eqid ( 𝑆s 𝐵 ) = ( 𝑆s 𝐵 )
14 6 12 7 13 gsumsubm ( 𝜑 → ( 𝑆 Σg 𝐹 ) = ( ( 𝑆s 𝐵 ) Σg 𝐹 ) )
15 fex ( ( 𝐹 : 𝐴𝐵𝐴𝑉 ) → 𝐹 ∈ V )
16 7 6 15 syl2anc ( 𝜑𝐹 ∈ V )
17 ovexd ( 𝜑 → ( 𝑆s 𝐵 ) ∈ V )
18 3 fvexi 𝑈 ∈ V
19 18 a1i ( 𝜑𝑈 ∈ V )
20 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
21 4 oveq2i ( 𝑆s 𝐵 ) = ( 𝑆s ( Base ‘ 𝑈 ) )
22 1 2 3 20 5 21 ressply1bas ( 𝜑 → ( Base ‘ 𝑈 ) = ( Base ‘ ( 𝑆s 𝐵 ) ) )
23 22 eqcomd ( 𝜑 → ( Base ‘ ( 𝑆s 𝐵 ) ) = ( Base ‘ 𝑈 ) )
24 13 subrgring ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) → ( 𝑆s 𝐵 ) ∈ Ring )
25 8 24 syl ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑆s 𝐵 ) ∈ Ring )
26 ringmgm ( ( 𝑆s 𝐵 ) ∈ Ring → ( 𝑆s 𝐵 ) ∈ Mgm )
27 5 25 26 3syl ( 𝜑 → ( 𝑆s 𝐵 ) ∈ Mgm )
28 simpl ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) ∧ 𝑡 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) ) ) → 𝜑 )
29 1 2 3 4 5 13 ressply1bas ( 𝜑𝐵 = ( Base ‘ ( 𝑆s 𝐵 ) ) )
30 29 eqcomd ( 𝜑 → ( Base ‘ ( 𝑆s 𝐵 ) ) = 𝐵 )
31 30 eleq2d ( 𝜑 → ( 𝑠 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) ↔ 𝑠𝐵 ) )
32 31 biimpcd ( 𝑠 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) → ( 𝜑𝑠𝐵 ) )
33 32 adantr ( ( 𝑠 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) ∧ 𝑡 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) ) → ( 𝜑𝑠𝐵 ) )
34 33 impcom ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) ∧ 𝑡 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) ) ) → 𝑠𝐵 )
35 30 eleq2d ( 𝜑 → ( 𝑡 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) ↔ 𝑡𝐵 ) )
36 35 biimpcd ( 𝑡 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) → ( 𝜑𝑡𝐵 ) )
37 36 adantl ( ( 𝑠 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) ∧ 𝑡 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) ) → ( 𝜑𝑡𝐵 ) )
38 37 impcom ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) ∧ 𝑡 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) ) ) → 𝑡𝐵 )
39 1 2 3 4 5 13 ressply1add ( ( 𝜑 ∧ ( 𝑠𝐵𝑡𝐵 ) ) → ( 𝑠 ( +g𝑈 ) 𝑡 ) = ( 𝑠 ( +g ‘ ( 𝑆s 𝐵 ) ) 𝑡 ) )
40 28 34 38 39 syl12anc ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) ∧ 𝑡 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) ) ) → ( 𝑠 ( +g𝑈 ) 𝑡 ) = ( 𝑠 ( +g ‘ ( 𝑆s 𝐵 ) ) 𝑡 ) )
41 40 eqcomd ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) ∧ 𝑡 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) ) ) → ( 𝑠 ( +g ‘ ( 𝑆s 𝐵 ) ) 𝑡 ) = ( 𝑠 ( +g𝑈 ) 𝑡 ) )
42 7 ffund ( 𝜑 → Fun 𝐹 )
43 7 frnd ( 𝜑 → ran 𝐹𝐵 )
44 43 29 sseqtrd ( 𝜑 → ran 𝐹 ⊆ ( Base ‘ ( 𝑆s 𝐵 ) ) )
45 16 17 19 23 27 41 42 44 gsummgmpropd ( 𝜑 → ( ( 𝑆s 𝐵 ) Σg 𝐹 ) = ( 𝑈 Σg 𝐹 ) )
46 14 45 eqtrd ( 𝜑 → ( 𝑆 Σg 𝐹 ) = ( 𝑈 Σg 𝐹 ) )