| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrgply1.s |
⊢ 𝑆 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
subrgply1.h |
⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) |
| 3 |
|
subrgply1.u |
⊢ 𝑈 = ( Poly1 ‘ 𝐻 ) |
| 4 |
|
subrgply1.b |
⊢ 𝐵 = ( Base ‘ 𝑈 ) |
| 5 |
|
gsumply1subr.s |
⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) |
| 6 |
|
gsumply1subr.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 7 |
|
gsumply1subr.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 8 |
1 2 3 4
|
subrgply1 |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |
| 9 |
|
subrgsubg |
⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) → 𝐵 ∈ ( SubGrp ‘ 𝑆 ) ) |
| 10 |
|
subgsubm |
⊢ ( 𝐵 ∈ ( SubGrp ‘ 𝑆 ) → 𝐵 ∈ ( SubMnd ‘ 𝑆 ) ) |
| 11 |
5 8 9 10
|
4syl |
⊢ ( 𝜑 → 𝐵 ∈ ( SubMnd ‘ 𝑆 ) ) |
| 12 |
|
eqid |
⊢ ( 𝑆 ↾s 𝐵 ) = ( 𝑆 ↾s 𝐵 ) |
| 13 |
6 11 7 12
|
gsumsubm |
⊢ ( 𝜑 → ( 𝑆 Σg 𝐹 ) = ( ( 𝑆 ↾s 𝐵 ) Σg 𝐹 ) ) |
| 14 |
7 6
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 15 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑆 ↾s 𝐵 ) ∈ V ) |
| 16 |
3
|
fvexi |
⊢ 𝑈 ∈ V |
| 17 |
16
|
a1i |
⊢ ( 𝜑 → 𝑈 ∈ V ) |
| 18 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
| 19 |
4
|
oveq2i |
⊢ ( 𝑆 ↾s 𝐵 ) = ( 𝑆 ↾s ( Base ‘ 𝑈 ) ) |
| 20 |
1 2 3 18 5 19
|
ressply1bas |
⊢ ( 𝜑 → ( Base ‘ 𝑈 ) = ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ) |
| 21 |
20
|
eqcomd |
⊢ ( 𝜑 → ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) = ( Base ‘ 𝑈 ) ) |
| 22 |
12
|
subrgring |
⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) → ( 𝑆 ↾s 𝐵 ) ∈ Ring ) |
| 23 |
|
ringmgm |
⊢ ( ( 𝑆 ↾s 𝐵 ) ∈ Ring → ( 𝑆 ↾s 𝐵 ) ∈ Mgm ) |
| 24 |
5 8 22 23
|
4syl |
⊢ ( 𝜑 → ( 𝑆 ↾s 𝐵 ) ∈ Mgm ) |
| 25 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ∧ 𝑡 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ) ) → 𝜑 ) |
| 26 |
1 2 3 4 5 12
|
ressply1bas |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ) |
| 27 |
26
|
eqcomd |
⊢ ( 𝜑 → ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) = 𝐵 ) |
| 28 |
27
|
eleq2d |
⊢ ( 𝜑 → ( 𝑠 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ↔ 𝑠 ∈ 𝐵 ) ) |
| 29 |
28
|
biimpcd |
⊢ ( 𝑠 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) → ( 𝜑 → 𝑠 ∈ 𝐵 ) ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝑠 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ∧ 𝑡 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ) → ( 𝜑 → 𝑠 ∈ 𝐵 ) ) |
| 31 |
30
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ∧ 𝑡 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ) ) → 𝑠 ∈ 𝐵 ) |
| 32 |
27
|
eleq2d |
⊢ ( 𝜑 → ( 𝑡 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ↔ 𝑡 ∈ 𝐵 ) ) |
| 33 |
32
|
biimpcd |
⊢ ( 𝑡 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) → ( 𝜑 → 𝑡 ∈ 𝐵 ) ) |
| 34 |
33
|
adantl |
⊢ ( ( 𝑠 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ∧ 𝑡 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ) → ( 𝜑 → 𝑡 ∈ 𝐵 ) ) |
| 35 |
34
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ∧ 𝑡 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ) ) → 𝑡 ∈ 𝐵 ) |
| 36 |
1 2 3 4 5 12
|
ressply1add |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵 ) ) → ( 𝑠 ( +g ‘ 𝑈 ) 𝑡 ) = ( 𝑠 ( +g ‘ ( 𝑆 ↾s 𝐵 ) ) 𝑡 ) ) |
| 37 |
25 31 35 36
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ∧ 𝑡 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ) ) → ( 𝑠 ( +g ‘ 𝑈 ) 𝑡 ) = ( 𝑠 ( +g ‘ ( 𝑆 ↾s 𝐵 ) ) 𝑡 ) ) |
| 38 |
37
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ∧ 𝑡 ∈ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ) ) → ( 𝑠 ( +g ‘ ( 𝑆 ↾s 𝐵 ) ) 𝑡 ) = ( 𝑠 ( +g ‘ 𝑈 ) 𝑡 ) ) |
| 39 |
7
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
| 40 |
7
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ 𝐵 ) |
| 41 |
40 26
|
sseqtrd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( Base ‘ ( 𝑆 ↾s 𝐵 ) ) ) |
| 42 |
14 15 17 21 24 38 39 41
|
gsummgmpropd |
⊢ ( 𝜑 → ( ( 𝑆 ↾s 𝐵 ) Σg 𝐹 ) = ( 𝑈 Σg 𝐹 ) ) |
| 43 |
13 42
|
eqtrd |
⊢ ( 𝜑 → ( 𝑆 Σg 𝐹 ) = ( 𝑈 Σg 𝐹 ) ) |