| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrgply1.s |
⊢ 𝑆 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
subrgply1.h |
⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) |
| 3 |
|
subrgply1.u |
⊢ 𝑈 = ( Poly1 ‘ 𝐻 ) |
| 4 |
|
subrgply1.b |
⊢ 𝐵 = ( Base ‘ 𝑈 ) |
| 5 |
|
1on |
⊢ 1o ∈ On |
| 6 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
| 7 |
|
eqid |
⊢ ( 1o mPoly 𝐻 ) = ( 1o mPoly 𝐻 ) |
| 8 |
3 4
|
ply1bas |
⊢ 𝐵 = ( Base ‘ ( 1o mPoly 𝐻 ) ) |
| 9 |
6 2 7 8
|
subrgmpl |
⊢ ( ( 1o ∈ On ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝐵 ∈ ( SubRing ‘ ( 1o mPoly 𝑅 ) ) ) |
| 10 |
5 9
|
mpan |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝐵 ∈ ( SubRing ‘ ( 1o mPoly 𝑅 ) ) ) |
| 11 |
|
eqidd |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 13 |
1 12
|
ply1bas |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
| 14 |
13
|
a1i |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( Base ‘ 𝑆 ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
| 15 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
| 16 |
1 6 15
|
ply1plusg |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ ( 1o mPoly 𝑅 ) ) |
| 17 |
16
|
a1i |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( +g ‘ 𝑆 ) = ( +g ‘ ( 1o mPoly 𝑅 ) ) ) |
| 18 |
17
|
oveqdr |
⊢ ( ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 1o mPoly 𝑅 ) ) 𝑦 ) ) |
| 19 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
| 20 |
1 6 19
|
ply1mulr |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ ( 1o mPoly 𝑅 ) ) |
| 21 |
20
|
a1i |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( .r ‘ 𝑆 ) = ( .r ‘ ( 1o mPoly 𝑅 ) ) ) |
| 22 |
21
|
oveqdr |
⊢ ( ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) = ( 𝑥 ( .r ‘ ( 1o mPoly 𝑅 ) ) 𝑦 ) ) |
| 23 |
11 14 18 22
|
subrgpropd |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( SubRing ‘ 𝑆 ) = ( SubRing ‘ ( 1o mPoly 𝑅 ) ) ) |
| 24 |
10 23
|
eleqtrrd |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |