| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ressply1.s |
⊢ 𝑆 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
ressply1.h |
⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) |
| 3 |
|
ressply1.u |
⊢ 𝑈 = ( Poly1 ‘ 𝐻 ) |
| 4 |
|
ressply1.b |
⊢ 𝐵 = ( Base ‘ 𝑈 ) |
| 5 |
|
ressply1.2 |
⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) |
| 6 |
|
ressply1.p |
⊢ 𝑃 = ( 𝑆 ↾s 𝐵 ) |
| 7 |
|
eqid |
⊢ ( PwSer1 ‘ 𝐻 ) = ( PwSer1 ‘ 𝐻 ) |
| 8 |
|
eqid |
⊢ ( Base ‘ ( PwSer1 ‘ 𝐻 ) ) = ( Base ‘ ( PwSer1 ‘ 𝐻 ) ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 10 |
1 2 3 4 5 7 8 9
|
ressply1bas2 |
⊢ ( 𝜑 → 𝐵 = ( ( Base ‘ ( PwSer1 ‘ 𝐻 ) ) ∩ ( Base ‘ 𝑆 ) ) ) |
| 11 |
|
inss2 |
⊢ ( ( Base ‘ ( PwSer1 ‘ 𝐻 ) ) ∩ ( Base ‘ 𝑆 ) ) ⊆ ( Base ‘ 𝑆 ) |
| 12 |
10 11
|
eqsstrdi |
⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
| 13 |
6 9
|
ressbas2 |
⊢ ( 𝐵 ⊆ ( Base ‘ 𝑆 ) → 𝐵 = ( Base ‘ 𝑃 ) ) |
| 14 |
12 13
|
syl |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑃 ) ) |