| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrgply1.s |
|
| 2 |
|
subrgply1.h |
|
| 3 |
|
subrgply1.u |
|
| 4 |
|
subrgply1.b |
|
| 5 |
|
gsumply1subr.s |
|
| 6 |
|
gsumply1subr.a |
|
| 7 |
|
gsumply1subr.f |
|
| 8 |
1 2 3 4
|
subrgply1 |
|
| 9 |
|
subrgsubg |
|
| 10 |
|
subgsubm |
|
| 11 |
5 8 9 10
|
4syl |
|
| 12 |
|
eqid |
|
| 13 |
6 11 7 12
|
gsumsubm |
|
| 14 |
7 6
|
fexd |
|
| 15 |
|
ovexd |
|
| 16 |
3
|
fvexi |
|
| 17 |
16
|
a1i |
|
| 18 |
|
eqid |
|
| 19 |
4
|
oveq2i |
|
| 20 |
1 2 3 18 5 19
|
ressply1bas |
|
| 21 |
20
|
eqcomd |
|
| 22 |
12
|
subrgring |
|
| 23 |
|
ringmgm |
|
| 24 |
5 8 22 23
|
4syl |
|
| 25 |
|
simpl |
|
| 26 |
1 2 3 4 5 12
|
ressply1bas |
|
| 27 |
26
|
eqcomd |
|
| 28 |
27
|
eleq2d |
|
| 29 |
28
|
biimpcd |
|
| 30 |
29
|
adantr |
|
| 31 |
30
|
impcom |
|
| 32 |
27
|
eleq2d |
|
| 33 |
32
|
biimpcd |
|
| 34 |
33
|
adantl |
|
| 35 |
34
|
impcom |
|
| 36 |
1 2 3 4 5 12
|
ressply1add |
|
| 37 |
25 31 35 36
|
syl12anc |
|
| 38 |
37
|
eqcomd |
|
| 39 |
7
|
ffund |
|
| 40 |
7
|
frnd |
|
| 41 |
40 26
|
sseqtrd |
|
| 42 |
14 15 17 21 24 38 39 41
|
gsummgmpropd |
|
| 43 |
13 42
|
eqtrd |
|