Metamath Proof Explorer


Theorem gsumply1subr

Description: Evaluate a group sum in a polynomial ring over a subring. (Contributed by AV, 22-Sep-2019) (Proof shortened by AV, 31-Jan-2020)

Ref Expression
Hypotheses subrgply1.s S = Poly 1 R
subrgply1.h H = R 𝑠 T
subrgply1.u U = Poly 1 H
subrgply1.b B = Base U
gsumply1subr.s φ T SubRing R
gsumply1subr.a φ A V
gsumply1subr.f φ F : A B
Assertion gsumply1subr φ S F = U F

Proof

Step Hyp Ref Expression
1 subrgply1.s S = Poly 1 R
2 subrgply1.h H = R 𝑠 T
3 subrgply1.u U = Poly 1 H
4 subrgply1.b B = Base U
5 gsumply1subr.s φ T SubRing R
6 gsumply1subr.a φ A V
7 gsumply1subr.f φ F : A B
8 1 2 3 4 subrgply1 T SubRing R B SubRing S
9 subrgsubg B SubRing S B SubGrp S
10 subgsubm B SubGrp S B SubMnd S
11 9 10 syl B SubRing S B SubMnd S
12 5 8 11 3syl φ B SubMnd S
13 eqid S 𝑠 B = S 𝑠 B
14 6 12 7 13 gsumsubm φ S F = S 𝑠 B F
15 fex F : A B A V F V
16 7 6 15 syl2anc φ F V
17 ovexd φ S 𝑠 B V
18 3 fvexi U V
19 18 a1i φ U V
20 eqid Base U = Base U
21 4 oveq2i S 𝑠 B = S 𝑠 Base U
22 1 2 3 20 5 21 ressply1bas φ Base U = Base S 𝑠 B
23 22 eqcomd φ Base S 𝑠 B = Base U
24 13 subrgring B SubRing S S 𝑠 B Ring
25 8 24 syl T SubRing R S 𝑠 B Ring
26 ringmgm S 𝑠 B Ring S 𝑠 B Mgm
27 5 25 26 3syl φ S 𝑠 B Mgm
28 simpl φ s Base S 𝑠 B t Base S 𝑠 B φ
29 1 2 3 4 5 13 ressply1bas φ B = Base S 𝑠 B
30 29 eqcomd φ Base S 𝑠 B = B
31 30 eleq2d φ s Base S 𝑠 B s B
32 31 biimpcd s Base S 𝑠 B φ s B
33 32 adantr s Base S 𝑠 B t Base S 𝑠 B φ s B
34 33 impcom φ s Base S 𝑠 B t Base S 𝑠 B s B
35 30 eleq2d φ t Base S 𝑠 B t B
36 35 biimpcd t Base S 𝑠 B φ t B
37 36 adantl s Base S 𝑠 B t Base S 𝑠 B φ t B
38 37 impcom φ s Base S 𝑠 B t Base S 𝑠 B t B
39 1 2 3 4 5 13 ressply1add φ s B t B s + U t = s + S 𝑠 B t
40 28 34 38 39 syl12anc φ s Base S 𝑠 B t Base S 𝑠 B s + U t = s + S 𝑠 B t
41 40 eqcomd φ s Base S 𝑠 B t Base S 𝑠 B s + S 𝑠 B t = s + U t
42 7 ffund φ Fun F
43 7 frnd φ ran F B
44 43 29 sseqtrd φ ran F Base S 𝑠 B
45 16 17 19 23 27 41 42 44 gsummgmpropd φ S 𝑠 B F = U F
46 14 45 eqtrd φ S F = U F