Metamath Proof Explorer


Theorem ressply1sub

Description: A restricted polynomial algebra has the same subtraction operation. (Contributed by Thierry Arnoux, 30-Jan-2025)

Ref Expression
Hypotheses ressply.1
|- S = ( Poly1 ` R )
ressply.2
|- H = ( R |`s T )
ressply.3
|- U = ( Poly1 ` H )
ressply.4
|- B = ( Base ` U )
ressply.5
|- ( ph -> T e. ( SubRing ` R ) )
ressply1.1
|- P = ( S |`s B )
ressply1sub.1
|- ( ph -> X e. B )
ressply1sub.2
|- ( ph -> Y e. B )
Assertion ressply1sub
|- ( ph -> ( X ( -g ` U ) Y ) = ( X ( -g ` P ) Y ) )

Proof

Step Hyp Ref Expression
1 ressply.1
 |-  S = ( Poly1 ` R )
2 ressply.2
 |-  H = ( R |`s T )
3 ressply.3
 |-  U = ( Poly1 ` H )
4 ressply.4
 |-  B = ( Base ` U )
5 ressply.5
 |-  ( ph -> T e. ( SubRing ` R ) )
6 ressply1.1
 |-  P = ( S |`s B )
7 ressply1sub.1
 |-  ( ph -> X e. B )
8 ressply1sub.2
 |-  ( ph -> Y e. B )
9 1 2 3 4 5 6 8 ressply1invg
 |-  ( ph -> ( ( invg ` U ) ` Y ) = ( ( invg ` P ) ` Y ) )
10 9 oveq2d
 |-  ( ph -> ( X ( +g ` U ) ( ( invg ` U ) ` Y ) ) = ( X ( +g ` U ) ( ( invg ` P ) ` Y ) ) )
11 1 2 3 4 subrgply1
 |-  ( T e. ( SubRing ` R ) -> B e. ( SubRing ` S ) )
12 subrgsubg
 |-  ( B e. ( SubRing ` S ) -> B e. ( SubGrp ` S ) )
13 5 11 12 3syl
 |-  ( ph -> B e. ( SubGrp ` S ) )
14 6 subggrp
 |-  ( B e. ( SubGrp ` S ) -> P e. Grp )
15 13 14 syl
 |-  ( ph -> P e. Grp )
16 1 2 3 4 5 6 ressply1bas
 |-  ( ph -> B = ( Base ` P ) )
17 8 16 eleqtrd
 |-  ( ph -> Y e. ( Base ` P ) )
18 eqid
 |-  ( Base ` P ) = ( Base ` P )
19 eqid
 |-  ( invg ` P ) = ( invg ` P )
20 18 19 grpinvcl
 |-  ( ( P e. Grp /\ Y e. ( Base ` P ) ) -> ( ( invg ` P ) ` Y ) e. ( Base ` P ) )
21 15 17 20 syl2anc
 |-  ( ph -> ( ( invg ` P ) ` Y ) e. ( Base ` P ) )
22 21 16 eleqtrrd
 |-  ( ph -> ( ( invg ` P ) ` Y ) e. B )
23 7 22 jca
 |-  ( ph -> ( X e. B /\ ( ( invg ` P ) ` Y ) e. B ) )
24 1 2 3 4 5 6 ressply1add
 |-  ( ( ph /\ ( X e. B /\ ( ( invg ` P ) ` Y ) e. B ) ) -> ( X ( +g ` U ) ( ( invg ` P ) ` Y ) ) = ( X ( +g ` P ) ( ( invg ` P ) ` Y ) ) )
25 23 24 mpdan
 |-  ( ph -> ( X ( +g ` U ) ( ( invg ` P ) ` Y ) ) = ( X ( +g ` P ) ( ( invg ` P ) ` Y ) ) )
26 10 25 eqtrd
 |-  ( ph -> ( X ( +g ` U ) ( ( invg ` U ) ` Y ) ) = ( X ( +g ` P ) ( ( invg ` P ) ` Y ) ) )
27 eqid
 |-  ( +g ` U ) = ( +g ` U )
28 eqid
 |-  ( invg ` U ) = ( invg ` U )
29 eqid
 |-  ( -g ` U ) = ( -g ` U )
30 4 27 28 29 grpsubval
 |-  ( ( X e. B /\ Y e. B ) -> ( X ( -g ` U ) Y ) = ( X ( +g ` U ) ( ( invg ` U ) ` Y ) ) )
31 7 8 30 syl2anc
 |-  ( ph -> ( X ( -g ` U ) Y ) = ( X ( +g ` U ) ( ( invg ` U ) ` Y ) ) )
32 7 16 eleqtrd
 |-  ( ph -> X e. ( Base ` P ) )
33 eqid
 |-  ( +g ` P ) = ( +g ` P )
34 eqid
 |-  ( -g ` P ) = ( -g ` P )
35 18 33 19 34 grpsubval
 |-  ( ( X e. ( Base ` P ) /\ Y e. ( Base ` P ) ) -> ( X ( -g ` P ) Y ) = ( X ( +g ` P ) ( ( invg ` P ) ` Y ) ) )
36 32 17 35 syl2anc
 |-  ( ph -> ( X ( -g ` P ) Y ) = ( X ( +g ` P ) ( ( invg ` P ) ` Y ) ) )
37 26 31 36 3eqtr4d
 |-  ( ph -> ( X ( -g ` U ) Y ) = ( X ( -g ` P ) Y ) )