Step |
Hyp |
Ref |
Expression |
1 |
|
ressply.1 |
|- S = ( Poly1 ` R ) |
2 |
|
ressply.2 |
|- H = ( R |`s T ) |
3 |
|
ressply.3 |
|- U = ( Poly1 ` H ) |
4 |
|
ressply.4 |
|- B = ( Base ` U ) |
5 |
|
ressply.5 |
|- ( ph -> T e. ( SubRing ` R ) ) |
6 |
|
ressply1.1 |
|- P = ( S |`s B ) |
7 |
|
ressply1sub.1 |
|- ( ph -> X e. B ) |
8 |
|
ressply1sub.2 |
|- ( ph -> Y e. B ) |
9 |
1 2 3 4 5 6 8
|
ressply1invg |
|- ( ph -> ( ( invg ` U ) ` Y ) = ( ( invg ` P ) ` Y ) ) |
10 |
9
|
oveq2d |
|- ( ph -> ( X ( +g ` U ) ( ( invg ` U ) ` Y ) ) = ( X ( +g ` U ) ( ( invg ` P ) ` Y ) ) ) |
11 |
1 2 3 4
|
subrgply1 |
|- ( T e. ( SubRing ` R ) -> B e. ( SubRing ` S ) ) |
12 |
|
subrgsubg |
|- ( B e. ( SubRing ` S ) -> B e. ( SubGrp ` S ) ) |
13 |
6
|
subggrp |
|- ( B e. ( SubGrp ` S ) -> P e. Grp ) |
14 |
5 11 12 13
|
4syl |
|- ( ph -> P e. Grp ) |
15 |
1 2 3 4 5 6
|
ressply1bas |
|- ( ph -> B = ( Base ` P ) ) |
16 |
8 15
|
eleqtrd |
|- ( ph -> Y e. ( Base ` P ) ) |
17 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
18 |
|
eqid |
|- ( invg ` P ) = ( invg ` P ) |
19 |
17 18
|
grpinvcl |
|- ( ( P e. Grp /\ Y e. ( Base ` P ) ) -> ( ( invg ` P ) ` Y ) e. ( Base ` P ) ) |
20 |
14 16 19
|
syl2anc |
|- ( ph -> ( ( invg ` P ) ` Y ) e. ( Base ` P ) ) |
21 |
20 15
|
eleqtrrd |
|- ( ph -> ( ( invg ` P ) ` Y ) e. B ) |
22 |
7 21
|
jca |
|- ( ph -> ( X e. B /\ ( ( invg ` P ) ` Y ) e. B ) ) |
23 |
1 2 3 4 5 6
|
ressply1add |
|- ( ( ph /\ ( X e. B /\ ( ( invg ` P ) ` Y ) e. B ) ) -> ( X ( +g ` U ) ( ( invg ` P ) ` Y ) ) = ( X ( +g ` P ) ( ( invg ` P ) ` Y ) ) ) |
24 |
22 23
|
mpdan |
|- ( ph -> ( X ( +g ` U ) ( ( invg ` P ) ` Y ) ) = ( X ( +g ` P ) ( ( invg ` P ) ` Y ) ) ) |
25 |
10 24
|
eqtrd |
|- ( ph -> ( X ( +g ` U ) ( ( invg ` U ) ` Y ) ) = ( X ( +g ` P ) ( ( invg ` P ) ` Y ) ) ) |
26 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
27 |
|
eqid |
|- ( invg ` U ) = ( invg ` U ) |
28 |
|
eqid |
|- ( -g ` U ) = ( -g ` U ) |
29 |
4 26 27 28
|
grpsubval |
|- ( ( X e. B /\ Y e. B ) -> ( X ( -g ` U ) Y ) = ( X ( +g ` U ) ( ( invg ` U ) ` Y ) ) ) |
30 |
7 8 29
|
syl2anc |
|- ( ph -> ( X ( -g ` U ) Y ) = ( X ( +g ` U ) ( ( invg ` U ) ` Y ) ) ) |
31 |
7 15
|
eleqtrd |
|- ( ph -> X e. ( Base ` P ) ) |
32 |
|
eqid |
|- ( +g ` P ) = ( +g ` P ) |
33 |
|
eqid |
|- ( -g ` P ) = ( -g ` P ) |
34 |
17 32 18 33
|
grpsubval |
|- ( ( X e. ( Base ` P ) /\ Y e. ( Base ` P ) ) -> ( X ( -g ` P ) Y ) = ( X ( +g ` P ) ( ( invg ` P ) ` Y ) ) ) |
35 |
31 16 34
|
syl2anc |
|- ( ph -> ( X ( -g ` P ) Y ) = ( X ( +g ` P ) ( ( invg ` P ) ` Y ) ) ) |
36 |
25 30 35
|
3eqtr4d |
|- ( ph -> ( X ( -g ` U ) Y ) = ( X ( -g ` P ) Y ) ) |