| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ressply.1 |
⊢ 𝑆 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
ressply.2 |
⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) |
| 3 |
|
ressply.3 |
⊢ 𝑈 = ( Poly1 ‘ 𝐻 ) |
| 4 |
|
ressply.4 |
⊢ 𝐵 = ( Base ‘ 𝑈 ) |
| 5 |
|
ressply.5 |
⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) |
| 6 |
|
ressply1.1 |
⊢ 𝑃 = ( 𝑆 ↾s 𝐵 ) |
| 7 |
|
ressply1sub.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 8 |
|
ressply1sub.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 9 |
1 2 3 4 5 6 8
|
ressply1invg |
⊢ ( 𝜑 → ( ( invg ‘ 𝑈 ) ‘ 𝑌 ) = ( ( invg ‘ 𝑃 ) ‘ 𝑌 ) ) |
| 10 |
9
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 ( +g ‘ 𝑈 ) ( ( invg ‘ 𝑈 ) ‘ 𝑌 ) ) = ( 𝑋 ( +g ‘ 𝑈 ) ( ( invg ‘ 𝑃 ) ‘ 𝑌 ) ) ) |
| 11 |
1 2 3 4
|
subrgply1 |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |
| 12 |
|
subrgsubg |
⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) → 𝐵 ∈ ( SubGrp ‘ 𝑆 ) ) |
| 13 |
6
|
subggrp |
⊢ ( 𝐵 ∈ ( SubGrp ‘ 𝑆 ) → 𝑃 ∈ Grp ) |
| 14 |
5 11 12 13
|
4syl |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
| 15 |
1 2 3 4 5 6
|
ressply1bas |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑃 ) ) |
| 16 |
8 15
|
eleqtrd |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝑃 ) ) |
| 17 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 18 |
|
eqid |
⊢ ( invg ‘ 𝑃 ) = ( invg ‘ 𝑃 ) |
| 19 |
17 18
|
grpinvcl |
⊢ ( ( 𝑃 ∈ Grp ∧ 𝑌 ∈ ( Base ‘ 𝑃 ) ) → ( ( invg ‘ 𝑃 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝑃 ) ) |
| 20 |
14 16 19
|
syl2anc |
⊢ ( 𝜑 → ( ( invg ‘ 𝑃 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝑃 ) ) |
| 21 |
20 15
|
eleqtrrd |
⊢ ( 𝜑 → ( ( invg ‘ 𝑃 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| 22 |
7 21
|
jca |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ∧ ( ( invg ‘ 𝑃 ) ‘ 𝑌 ) ∈ 𝐵 ) ) |
| 23 |
1 2 3 4 5 6
|
ressply1add |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ ( ( invg ‘ 𝑃 ) ‘ 𝑌 ) ∈ 𝐵 ) ) → ( 𝑋 ( +g ‘ 𝑈 ) ( ( invg ‘ 𝑃 ) ‘ 𝑌 ) ) = ( 𝑋 ( +g ‘ 𝑃 ) ( ( invg ‘ 𝑃 ) ‘ 𝑌 ) ) ) |
| 24 |
22 23
|
mpdan |
⊢ ( 𝜑 → ( 𝑋 ( +g ‘ 𝑈 ) ( ( invg ‘ 𝑃 ) ‘ 𝑌 ) ) = ( 𝑋 ( +g ‘ 𝑃 ) ( ( invg ‘ 𝑃 ) ‘ 𝑌 ) ) ) |
| 25 |
10 24
|
eqtrd |
⊢ ( 𝜑 → ( 𝑋 ( +g ‘ 𝑈 ) ( ( invg ‘ 𝑈 ) ‘ 𝑌 ) ) = ( 𝑋 ( +g ‘ 𝑃 ) ( ( invg ‘ 𝑃 ) ‘ 𝑌 ) ) ) |
| 26 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
| 27 |
|
eqid |
⊢ ( invg ‘ 𝑈 ) = ( invg ‘ 𝑈 ) |
| 28 |
|
eqid |
⊢ ( -g ‘ 𝑈 ) = ( -g ‘ 𝑈 ) |
| 29 |
4 26 27 28
|
grpsubval |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( -g ‘ 𝑈 ) 𝑌 ) = ( 𝑋 ( +g ‘ 𝑈 ) ( ( invg ‘ 𝑈 ) ‘ 𝑌 ) ) ) |
| 30 |
7 8 29
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ( -g ‘ 𝑈 ) 𝑌 ) = ( 𝑋 ( +g ‘ 𝑈 ) ( ( invg ‘ 𝑈 ) ‘ 𝑌 ) ) ) |
| 31 |
7 15
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 32 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
| 33 |
|
eqid |
⊢ ( -g ‘ 𝑃 ) = ( -g ‘ 𝑃 ) |
| 34 |
17 32 18 33
|
grpsubval |
⊢ ( ( 𝑋 ∈ ( Base ‘ 𝑃 ) ∧ 𝑌 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑋 ( -g ‘ 𝑃 ) 𝑌 ) = ( 𝑋 ( +g ‘ 𝑃 ) ( ( invg ‘ 𝑃 ) ‘ 𝑌 ) ) ) |
| 35 |
31 16 34
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ( -g ‘ 𝑃 ) 𝑌 ) = ( 𝑋 ( +g ‘ 𝑃 ) ( ( invg ‘ 𝑃 ) ‘ 𝑌 ) ) ) |
| 36 |
25 30 35
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑋 ( -g ‘ 𝑈 ) 𝑌 ) = ( 𝑋 ( -g ‘ 𝑃 ) 𝑌 ) ) |