Step |
Hyp |
Ref |
Expression |
1 |
|
ressply.1 |
⊢ 𝑆 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ressply.2 |
⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) |
3 |
|
ressply.3 |
⊢ 𝑈 = ( Poly1 ‘ 𝐻 ) |
4 |
|
ressply.4 |
⊢ 𝐵 = ( Base ‘ 𝑈 ) |
5 |
|
ressply.5 |
⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) |
6 |
|
ressply1.1 |
⊢ 𝑃 = ( 𝑆 ↾s 𝐵 ) |
7 |
|
ressply1sub.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
8 |
|
ressply1sub.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
9 |
1 2 3 4 5 6 8
|
ressply1invg |
⊢ ( 𝜑 → ( ( invg ‘ 𝑈 ) ‘ 𝑌 ) = ( ( invg ‘ 𝑃 ) ‘ 𝑌 ) ) |
10 |
9
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 ( +g ‘ 𝑈 ) ( ( invg ‘ 𝑈 ) ‘ 𝑌 ) ) = ( 𝑋 ( +g ‘ 𝑈 ) ( ( invg ‘ 𝑃 ) ‘ 𝑌 ) ) ) |
11 |
1 2 3 4
|
subrgply1 |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |
12 |
|
subrgsubg |
⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) → 𝐵 ∈ ( SubGrp ‘ 𝑆 ) ) |
13 |
6
|
subggrp |
⊢ ( 𝐵 ∈ ( SubGrp ‘ 𝑆 ) → 𝑃 ∈ Grp ) |
14 |
5 11 12 13
|
4syl |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
15 |
1 2 3 4 5 6
|
ressply1bas |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑃 ) ) |
16 |
8 15
|
eleqtrd |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝑃 ) ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
18 |
|
eqid |
⊢ ( invg ‘ 𝑃 ) = ( invg ‘ 𝑃 ) |
19 |
17 18
|
grpinvcl |
⊢ ( ( 𝑃 ∈ Grp ∧ 𝑌 ∈ ( Base ‘ 𝑃 ) ) → ( ( invg ‘ 𝑃 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝑃 ) ) |
20 |
14 16 19
|
syl2anc |
⊢ ( 𝜑 → ( ( invg ‘ 𝑃 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝑃 ) ) |
21 |
20 15
|
eleqtrrd |
⊢ ( 𝜑 → ( ( invg ‘ 𝑃 ) ‘ 𝑌 ) ∈ 𝐵 ) |
22 |
7 21
|
jca |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ∧ ( ( invg ‘ 𝑃 ) ‘ 𝑌 ) ∈ 𝐵 ) ) |
23 |
1 2 3 4 5 6
|
ressply1add |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ ( ( invg ‘ 𝑃 ) ‘ 𝑌 ) ∈ 𝐵 ) ) → ( 𝑋 ( +g ‘ 𝑈 ) ( ( invg ‘ 𝑃 ) ‘ 𝑌 ) ) = ( 𝑋 ( +g ‘ 𝑃 ) ( ( invg ‘ 𝑃 ) ‘ 𝑌 ) ) ) |
24 |
22 23
|
mpdan |
⊢ ( 𝜑 → ( 𝑋 ( +g ‘ 𝑈 ) ( ( invg ‘ 𝑃 ) ‘ 𝑌 ) ) = ( 𝑋 ( +g ‘ 𝑃 ) ( ( invg ‘ 𝑃 ) ‘ 𝑌 ) ) ) |
25 |
10 24
|
eqtrd |
⊢ ( 𝜑 → ( 𝑋 ( +g ‘ 𝑈 ) ( ( invg ‘ 𝑈 ) ‘ 𝑌 ) ) = ( 𝑋 ( +g ‘ 𝑃 ) ( ( invg ‘ 𝑃 ) ‘ 𝑌 ) ) ) |
26 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
27 |
|
eqid |
⊢ ( invg ‘ 𝑈 ) = ( invg ‘ 𝑈 ) |
28 |
|
eqid |
⊢ ( -g ‘ 𝑈 ) = ( -g ‘ 𝑈 ) |
29 |
4 26 27 28
|
grpsubval |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( -g ‘ 𝑈 ) 𝑌 ) = ( 𝑋 ( +g ‘ 𝑈 ) ( ( invg ‘ 𝑈 ) ‘ 𝑌 ) ) ) |
30 |
7 8 29
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ( -g ‘ 𝑈 ) 𝑌 ) = ( 𝑋 ( +g ‘ 𝑈 ) ( ( invg ‘ 𝑈 ) ‘ 𝑌 ) ) ) |
31 |
7 15
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
32 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
33 |
|
eqid |
⊢ ( -g ‘ 𝑃 ) = ( -g ‘ 𝑃 ) |
34 |
17 32 18 33
|
grpsubval |
⊢ ( ( 𝑋 ∈ ( Base ‘ 𝑃 ) ∧ 𝑌 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑋 ( -g ‘ 𝑃 ) 𝑌 ) = ( 𝑋 ( +g ‘ 𝑃 ) ( ( invg ‘ 𝑃 ) ‘ 𝑌 ) ) ) |
35 |
31 16 34
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ( -g ‘ 𝑃 ) 𝑌 ) = ( 𝑋 ( +g ‘ 𝑃 ) ( ( invg ‘ 𝑃 ) ‘ 𝑌 ) ) ) |
36 |
25 30 35
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑋 ( -g ‘ 𝑈 ) 𝑌 ) = ( 𝑋 ( -g ‘ 𝑃 ) 𝑌 ) ) |