| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ressply.1 |
⊢ 𝑆 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
ressply.2 |
⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) |
| 3 |
|
ressply.3 |
⊢ 𝑈 = ( Poly1 ‘ 𝐻 ) |
| 4 |
|
ressply.4 |
⊢ 𝐵 = ( Base ‘ 𝑈 ) |
| 5 |
|
ressply.5 |
⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) |
| 6 |
|
ressply1.1 |
⊢ 𝑃 = ( 𝑆 ↾s 𝐵 ) |
| 7 |
|
ressply1invg.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 8 |
1 2 3 4 5 6
|
ressply1bas |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑃 ) ) |
| 9 |
1 2 3 4 5 6
|
ressply1add |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑦 ( +g ‘ 𝑈 ) 𝑋 ) = ( 𝑦 ( +g ‘ 𝑃 ) 𝑋 ) ) |
| 10 |
9
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 ( +g ‘ 𝑈 ) 𝑋 ) = ( 𝑦 ( +g ‘ 𝑃 ) 𝑋 ) ) |
| 11 |
7 10
|
mpidan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ( +g ‘ 𝑈 ) 𝑋 ) = ( 𝑦 ( +g ‘ 𝑃 ) 𝑋 ) ) |
| 12 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
| 13 |
1 2 3 4 5 12
|
ressply10g |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑈 ) ) |
| 14 |
1 2 3 4
|
subrgply1 |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |
| 15 |
|
subrgrcl |
⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) → 𝑆 ∈ Ring ) |
| 16 |
|
ringmnd |
⊢ ( 𝑆 ∈ Ring → 𝑆 ∈ Mnd ) |
| 17 |
5 14 15 16
|
4syl |
⊢ ( 𝜑 → 𝑆 ∈ Mnd ) |
| 18 |
|
subrgsubg |
⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) → 𝐵 ∈ ( SubGrp ‘ 𝑆 ) ) |
| 19 |
12
|
subg0cl |
⊢ ( 𝐵 ∈ ( SubGrp ‘ 𝑆 ) → ( 0g ‘ 𝑆 ) ∈ 𝐵 ) |
| 20 |
5 14 18 19
|
4syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) ∈ 𝐵 ) |
| 21 |
|
eqid |
⊢ ( PwSer1 ‘ 𝐻 ) = ( PwSer1 ‘ 𝐻 ) |
| 22 |
|
eqid |
⊢ ( Base ‘ ( PwSer1 ‘ 𝐻 ) ) = ( Base ‘ ( PwSer1 ‘ 𝐻 ) ) |
| 23 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 24 |
1 2 3 4 5 21 22 23
|
ressply1bas2 |
⊢ ( 𝜑 → 𝐵 = ( ( Base ‘ ( PwSer1 ‘ 𝐻 ) ) ∩ ( Base ‘ 𝑆 ) ) ) |
| 25 |
|
inss2 |
⊢ ( ( Base ‘ ( PwSer1 ‘ 𝐻 ) ) ∩ ( Base ‘ 𝑆 ) ) ⊆ ( Base ‘ 𝑆 ) |
| 26 |
24 25
|
eqsstrdi |
⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
| 27 |
6 23 12
|
ress0g |
⊢ ( ( 𝑆 ∈ Mnd ∧ ( 0g ‘ 𝑆 ) ∈ 𝐵 ∧ 𝐵 ⊆ ( Base ‘ 𝑆 ) ) → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑃 ) ) |
| 28 |
17 20 26 27
|
syl3anc |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑃 ) ) |
| 29 |
13 28
|
eqtr3d |
⊢ ( 𝜑 → ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑃 ) ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑃 ) ) |
| 31 |
11 30
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑦 ( +g ‘ 𝑈 ) 𝑋 ) = ( 0g ‘ 𝑈 ) ↔ ( 𝑦 ( +g ‘ 𝑃 ) 𝑋 ) = ( 0g ‘ 𝑃 ) ) ) |
| 32 |
8 31
|
riotaeqbidva |
⊢ ( 𝜑 → ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 ( +g ‘ 𝑈 ) 𝑋 ) = ( 0g ‘ 𝑈 ) ) = ( ℩ 𝑦 ∈ ( Base ‘ 𝑃 ) ( 𝑦 ( +g ‘ 𝑃 ) 𝑋 ) = ( 0g ‘ 𝑃 ) ) ) |
| 33 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
| 34 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
| 35 |
|
eqid |
⊢ ( invg ‘ 𝑈 ) = ( invg ‘ 𝑈 ) |
| 36 |
4 33 34 35
|
grpinvval |
⊢ ( 𝑋 ∈ 𝐵 → ( ( invg ‘ 𝑈 ) ‘ 𝑋 ) = ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 ( +g ‘ 𝑈 ) 𝑋 ) = ( 0g ‘ 𝑈 ) ) ) |
| 37 |
7 36
|
syl |
⊢ ( 𝜑 → ( ( invg ‘ 𝑈 ) ‘ 𝑋 ) = ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 ( +g ‘ 𝑈 ) 𝑋 ) = ( 0g ‘ 𝑈 ) ) ) |
| 38 |
7 8
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 39 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 40 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
| 41 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 42 |
|
eqid |
⊢ ( invg ‘ 𝑃 ) = ( invg ‘ 𝑃 ) |
| 43 |
39 40 41 42
|
grpinvval |
⊢ ( 𝑋 ∈ ( Base ‘ 𝑃 ) → ( ( invg ‘ 𝑃 ) ‘ 𝑋 ) = ( ℩ 𝑦 ∈ ( Base ‘ 𝑃 ) ( 𝑦 ( +g ‘ 𝑃 ) 𝑋 ) = ( 0g ‘ 𝑃 ) ) ) |
| 44 |
38 43
|
syl |
⊢ ( 𝜑 → ( ( invg ‘ 𝑃 ) ‘ 𝑋 ) = ( ℩ 𝑦 ∈ ( Base ‘ 𝑃 ) ( 𝑦 ( +g ‘ 𝑃 ) 𝑋 ) = ( 0g ‘ 𝑃 ) ) ) |
| 45 |
32 37 44
|
3eqtr4d |
⊢ ( 𝜑 → ( ( invg ‘ 𝑈 ) ‘ 𝑋 ) = ( ( invg ‘ 𝑃 ) ‘ 𝑋 ) ) |