| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ressply.1 |
|
| 2 |
|
ressply.2 |
|
| 3 |
|
ressply.3 |
|
| 4 |
|
ressply.4 |
|
| 5 |
|
ressply.5 |
|
| 6 |
|
ressply1.1 |
|
| 7 |
|
ressply1invg.1 |
|
| 8 |
1 2 3 4 5 6
|
ressply1bas |
|
| 9 |
1 2 3 4 5 6
|
ressply1add |
|
| 10 |
9
|
anassrs |
|
| 11 |
7 10
|
mpidan |
|
| 12 |
|
eqid |
|
| 13 |
1 2 3 4 5 12
|
ressply10g |
|
| 14 |
1 2 3 4
|
subrgply1 |
|
| 15 |
|
subrgrcl |
|
| 16 |
|
ringmnd |
|
| 17 |
5 14 15 16
|
4syl |
|
| 18 |
|
subrgsubg |
|
| 19 |
12
|
subg0cl |
|
| 20 |
5 14 18 19
|
4syl |
|
| 21 |
|
eqid |
|
| 22 |
|
eqid |
|
| 23 |
|
eqid |
|
| 24 |
1 2 3 4 5 21 22 23
|
ressply1bas2 |
|
| 25 |
|
inss2 |
|
| 26 |
24 25
|
eqsstrdi |
|
| 27 |
6 23 12
|
ress0g |
|
| 28 |
17 20 26 27
|
syl3anc |
|
| 29 |
13 28
|
eqtr3d |
|
| 30 |
29
|
adantr |
|
| 31 |
11 30
|
eqeq12d |
|
| 32 |
8 31
|
riotaeqbidva |
|
| 33 |
|
eqid |
|
| 34 |
|
eqid |
|
| 35 |
|
eqid |
|
| 36 |
4 33 34 35
|
grpinvval |
|
| 37 |
7 36
|
syl |
|
| 38 |
7 8
|
eleqtrd |
|
| 39 |
|
eqid |
|
| 40 |
|
eqid |
|
| 41 |
|
eqid |
|
| 42 |
|
eqid |
|
| 43 |
39 40 41 42
|
grpinvval |
|
| 44 |
38 43
|
syl |
|
| 45 |
32 37 44
|
3eqtr4d |
|