Step |
Hyp |
Ref |
Expression |
1 |
|
ressply.1 |
|
2 |
|
ressply.2 |
|
3 |
|
ressply.3 |
|
4 |
|
ressply.4 |
|
5 |
|
ressply.5 |
|
6 |
|
ressply1.1 |
|
7 |
|
ressply1sub.1 |
|
8 |
|
ressply1sub.2 |
|
9 |
1 2 3 4 5 6 8
|
ressply1invg |
|
10 |
9
|
oveq2d |
|
11 |
1 2 3 4
|
subrgply1 |
|
12 |
|
subrgsubg |
|
13 |
6
|
subggrp |
|
14 |
5 11 12 13
|
4syl |
|
15 |
1 2 3 4 5 6
|
ressply1bas |
|
16 |
8 15
|
eleqtrd |
|
17 |
|
eqid |
|
18 |
|
eqid |
|
19 |
17 18
|
grpinvcl |
|
20 |
14 16 19
|
syl2anc |
|
21 |
20 15
|
eleqtrrd |
|
22 |
7 21
|
jca |
|
23 |
1 2 3 4 5 6
|
ressply1add |
|
24 |
22 23
|
mpdan |
|
25 |
10 24
|
eqtrd |
|
26 |
|
eqid |
|
27 |
|
eqid |
|
28 |
|
eqid |
|
29 |
4 26 27 28
|
grpsubval |
|
30 |
7 8 29
|
syl2anc |
|
31 |
7 15
|
eleqtrd |
|
32 |
|
eqid |
|
33 |
|
eqid |
|
34 |
17 32 18 33
|
grpsubval |
|
35 |
31 16 34
|
syl2anc |
|
36 |
25 30 35
|
3eqtr4d |
|