Step |
Hyp |
Ref |
Expression |
1 |
|
ressply.1 |
|- S = ( Poly1 ` R ) |
2 |
|
ressply.2 |
|- H = ( R |`s T ) |
3 |
|
ressply.3 |
|- U = ( Poly1 ` H ) |
4 |
|
ressply.4 |
|- B = ( Base ` U ) |
5 |
|
ressply.5 |
|- ( ph -> T e. ( SubRing ` R ) ) |
6 |
|
ressply1.1 |
|- P = ( S |`s B ) |
7 |
|
ressply1invg.1 |
|- ( ph -> X e. B ) |
8 |
1 2 3 4 5 6
|
ressply1bas |
|- ( ph -> B = ( Base ` P ) ) |
9 |
1 2 3 4 5 6
|
ressply1add |
|- ( ( ph /\ ( y e. B /\ X e. B ) ) -> ( y ( +g ` U ) X ) = ( y ( +g ` P ) X ) ) |
10 |
9
|
anassrs |
|- ( ( ( ph /\ y e. B ) /\ X e. B ) -> ( y ( +g ` U ) X ) = ( y ( +g ` P ) X ) ) |
11 |
7 10
|
mpidan |
|- ( ( ph /\ y e. B ) -> ( y ( +g ` U ) X ) = ( y ( +g ` P ) X ) ) |
12 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
13 |
1 2 3 4 5 12
|
ressply10g |
|- ( ph -> ( 0g ` S ) = ( 0g ` U ) ) |
14 |
1 2 3 4
|
subrgply1 |
|- ( T e. ( SubRing ` R ) -> B e. ( SubRing ` S ) ) |
15 |
5 14
|
syl |
|- ( ph -> B e. ( SubRing ` S ) ) |
16 |
|
subrgrcl |
|- ( B e. ( SubRing ` S ) -> S e. Ring ) |
17 |
|
ringmnd |
|- ( S e. Ring -> S e. Mnd ) |
18 |
15 16 17
|
3syl |
|- ( ph -> S e. Mnd ) |
19 |
|
subrgsubg |
|- ( B e. ( SubRing ` S ) -> B e. ( SubGrp ` S ) ) |
20 |
12
|
subg0cl |
|- ( B e. ( SubGrp ` S ) -> ( 0g ` S ) e. B ) |
21 |
15 19 20
|
3syl |
|- ( ph -> ( 0g ` S ) e. B ) |
22 |
|
eqid |
|- ( PwSer1 ` H ) = ( PwSer1 ` H ) |
23 |
|
eqid |
|- ( Base ` ( PwSer1 ` H ) ) = ( Base ` ( PwSer1 ` H ) ) |
24 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
25 |
1 2 3 4 5 22 23 24
|
ressply1bas2 |
|- ( ph -> B = ( ( Base ` ( PwSer1 ` H ) ) i^i ( Base ` S ) ) ) |
26 |
|
inss2 |
|- ( ( Base ` ( PwSer1 ` H ) ) i^i ( Base ` S ) ) C_ ( Base ` S ) |
27 |
25 26
|
eqsstrdi |
|- ( ph -> B C_ ( Base ` S ) ) |
28 |
6 24 12
|
ress0g |
|- ( ( S e. Mnd /\ ( 0g ` S ) e. B /\ B C_ ( Base ` S ) ) -> ( 0g ` S ) = ( 0g ` P ) ) |
29 |
18 21 27 28
|
syl3anc |
|- ( ph -> ( 0g ` S ) = ( 0g ` P ) ) |
30 |
13 29
|
eqtr3d |
|- ( ph -> ( 0g ` U ) = ( 0g ` P ) ) |
31 |
30
|
adantr |
|- ( ( ph /\ y e. B ) -> ( 0g ` U ) = ( 0g ` P ) ) |
32 |
11 31
|
eqeq12d |
|- ( ( ph /\ y e. B ) -> ( ( y ( +g ` U ) X ) = ( 0g ` U ) <-> ( y ( +g ` P ) X ) = ( 0g ` P ) ) ) |
33 |
8 32
|
riotaeqbidva |
|- ( ph -> ( iota_ y e. B ( y ( +g ` U ) X ) = ( 0g ` U ) ) = ( iota_ y e. ( Base ` P ) ( y ( +g ` P ) X ) = ( 0g ` P ) ) ) |
34 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
35 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
36 |
|
eqid |
|- ( invg ` U ) = ( invg ` U ) |
37 |
4 34 35 36
|
grpinvval |
|- ( X e. B -> ( ( invg ` U ) ` X ) = ( iota_ y e. B ( y ( +g ` U ) X ) = ( 0g ` U ) ) ) |
38 |
7 37
|
syl |
|- ( ph -> ( ( invg ` U ) ` X ) = ( iota_ y e. B ( y ( +g ` U ) X ) = ( 0g ` U ) ) ) |
39 |
7 8
|
eleqtrd |
|- ( ph -> X e. ( Base ` P ) ) |
40 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
41 |
|
eqid |
|- ( +g ` P ) = ( +g ` P ) |
42 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
43 |
|
eqid |
|- ( invg ` P ) = ( invg ` P ) |
44 |
40 41 42 43
|
grpinvval |
|- ( X e. ( Base ` P ) -> ( ( invg ` P ) ` X ) = ( iota_ y e. ( Base ` P ) ( y ( +g ` P ) X ) = ( 0g ` P ) ) ) |
45 |
39 44
|
syl |
|- ( ph -> ( ( invg ` P ) ` X ) = ( iota_ y e. ( Base ` P ) ( y ( +g ` P ) X ) = ( 0g ` P ) ) ) |
46 |
33 38 45
|
3eqtr4d |
|- ( ph -> ( ( invg ` U ) ` X ) = ( ( invg ` P ) ` X ) ) |