Step |
Hyp |
Ref |
Expression |
1 |
|
asclply1subcl.1 |
|- A = ( algSc ` V ) |
2 |
|
asclply1subcl.2 |
|- U = ( R |`s S ) |
3 |
|
asclply1subcl.3 |
|- V = ( Poly1 ` R ) |
4 |
|
asclply1subcl.4 |
|- W = ( Poly1 ` U ) |
5 |
|
asclply1subcl.5 |
|- P = ( Base ` W ) |
6 |
|
asclply1subcl.6 |
|- ( ph -> S e. ( SubRing ` R ) ) |
7 |
|
asclply1subcl.7 |
|- ( ph -> Z e. S ) |
8 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
9 |
8
|
subrgss |
|- ( S e. ( SubRing ` R ) -> S C_ ( Base ` R ) ) |
10 |
6 9
|
syl |
|- ( ph -> S C_ ( Base ` R ) ) |
11 |
10 7
|
sseldd |
|- ( ph -> Z e. ( Base ` R ) ) |
12 |
|
subrgrcl |
|- ( S e. ( SubRing ` R ) -> R e. Ring ) |
13 |
3
|
ply1sca |
|- ( R e. Ring -> R = ( Scalar ` V ) ) |
14 |
6 12 13
|
3syl |
|- ( ph -> R = ( Scalar ` V ) ) |
15 |
14
|
fveq2d |
|- ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` V ) ) ) |
16 |
11 15
|
eleqtrd |
|- ( ph -> Z e. ( Base ` ( Scalar ` V ) ) ) |
17 |
|
eqid |
|- ( Scalar ` V ) = ( Scalar ` V ) |
18 |
|
eqid |
|- ( Base ` ( Scalar ` V ) ) = ( Base ` ( Scalar ` V ) ) |
19 |
|
eqid |
|- ( .s ` V ) = ( .s ` V ) |
20 |
|
eqid |
|- ( 1r ` V ) = ( 1r ` V ) |
21 |
1 17 18 19 20
|
asclval |
|- ( Z e. ( Base ` ( Scalar ` V ) ) -> ( A ` Z ) = ( Z ( .s ` V ) ( 1r ` V ) ) ) |
22 |
16 21
|
syl |
|- ( ph -> ( A ` Z ) = ( Z ( .s ` V ) ( 1r ` V ) ) ) |
23 |
3 2 4 5
|
subrgply1 |
|- ( S e. ( SubRing ` R ) -> P e. ( SubRing ` V ) ) |
24 |
|
eqid |
|- ( V |`s P ) = ( V |`s P ) |
25 |
24 19
|
ressvsca |
|- ( P e. ( SubRing ` V ) -> ( .s ` V ) = ( .s ` ( V |`s P ) ) ) |
26 |
6 23 25
|
3syl |
|- ( ph -> ( .s ` V ) = ( .s ` ( V |`s P ) ) ) |
27 |
26
|
oveqd |
|- ( ph -> ( Z ( .s ` V ) ( 1r ` V ) ) = ( Z ( .s ` ( V |`s P ) ) ( 1r ` V ) ) ) |
28 |
|
id |
|- ( ph -> ph ) |
29 |
20
|
subrg1cl |
|- ( P e. ( SubRing ` V ) -> ( 1r ` V ) e. P ) |
30 |
6 23 29
|
3syl |
|- ( ph -> ( 1r ` V ) e. P ) |
31 |
3 2 4 5 6 24
|
ressply1vsca |
|- ( ( ph /\ ( Z e. S /\ ( 1r ` V ) e. P ) ) -> ( Z ( .s ` W ) ( 1r ` V ) ) = ( Z ( .s ` ( V |`s P ) ) ( 1r ` V ) ) ) |
32 |
28 7 30 31
|
syl12anc |
|- ( ph -> ( Z ( .s ` W ) ( 1r ` V ) ) = ( Z ( .s ` ( V |`s P ) ) ( 1r ` V ) ) ) |
33 |
27 32
|
eqtr4d |
|- ( ph -> ( Z ( .s ` V ) ( 1r ` V ) ) = ( Z ( .s ` W ) ( 1r ` V ) ) ) |
34 |
2
|
subrgring |
|- ( S e. ( SubRing ` R ) -> U e. Ring ) |
35 |
4
|
ply1lmod |
|- ( U e. Ring -> W e. LMod ) |
36 |
6 34 35
|
3syl |
|- ( ph -> W e. LMod ) |
37 |
2 8
|
ressbas2 |
|- ( S C_ ( Base ` R ) -> S = ( Base ` U ) ) |
38 |
6 9 37
|
3syl |
|- ( ph -> S = ( Base ` U ) ) |
39 |
7 38
|
eleqtrd |
|- ( ph -> Z e. ( Base ` U ) ) |
40 |
2
|
ovexi |
|- U e. _V |
41 |
4
|
ply1sca |
|- ( U e. _V -> U = ( Scalar ` W ) ) |
42 |
40 41
|
ax-mp |
|- U = ( Scalar ` W ) |
43 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
44 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
45 |
5 42 43 44
|
lmodvscl |
|- ( ( W e. LMod /\ Z e. ( Base ` U ) /\ ( 1r ` V ) e. P ) -> ( Z ( .s ` W ) ( 1r ` V ) ) e. P ) |
46 |
36 39 30 45
|
syl3anc |
|- ( ph -> ( Z ( .s ` W ) ( 1r ` V ) ) e. P ) |
47 |
33 46
|
eqeltrd |
|- ( ph -> ( Z ( .s ` V ) ( 1r ` V ) ) e. P ) |
48 |
22 47
|
eqeltrd |
|- ( ph -> ( A ` Z ) e. P ) |