Metamath Proof Explorer


Theorem evl1subd

Description: Polynomial evaluation builder for subtraction of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses evl1addd.q
|- O = ( eval1 ` R )
evl1addd.p
|- P = ( Poly1 ` R )
evl1addd.b
|- B = ( Base ` R )
evl1addd.u
|- U = ( Base ` P )
evl1addd.1
|- ( ph -> R e. CRing )
evl1addd.2
|- ( ph -> Y e. B )
evl1addd.3
|- ( ph -> ( M e. U /\ ( ( O ` M ) ` Y ) = V ) )
evl1addd.4
|- ( ph -> ( N e. U /\ ( ( O ` N ) ` Y ) = W ) )
evl1subd.s
|- .- = ( -g ` P )
evl1subd.d
|- D = ( -g ` R )
Assertion evl1subd
|- ( ph -> ( ( M .- N ) e. U /\ ( ( O ` ( M .- N ) ) ` Y ) = ( V D W ) ) )

Proof

Step Hyp Ref Expression
1 evl1addd.q
 |-  O = ( eval1 ` R )
2 evl1addd.p
 |-  P = ( Poly1 ` R )
3 evl1addd.b
 |-  B = ( Base ` R )
4 evl1addd.u
 |-  U = ( Base ` P )
5 evl1addd.1
 |-  ( ph -> R e. CRing )
6 evl1addd.2
 |-  ( ph -> Y e. B )
7 evl1addd.3
 |-  ( ph -> ( M e. U /\ ( ( O ` M ) ` Y ) = V ) )
8 evl1addd.4
 |-  ( ph -> ( N e. U /\ ( ( O ` N ) ` Y ) = W ) )
9 evl1subd.s
 |-  .- = ( -g ` P )
10 evl1subd.d
 |-  D = ( -g ` R )
11 eqid
 |-  ( R ^s B ) = ( R ^s B )
12 1 2 11 3 evl1rhm
 |-  ( R e. CRing -> O e. ( P RingHom ( R ^s B ) ) )
13 5 12 syl
 |-  ( ph -> O e. ( P RingHom ( R ^s B ) ) )
14 rhmghm
 |-  ( O e. ( P RingHom ( R ^s B ) ) -> O e. ( P GrpHom ( R ^s B ) ) )
15 13 14 syl
 |-  ( ph -> O e. ( P GrpHom ( R ^s B ) ) )
16 ghmgrp1
 |-  ( O e. ( P GrpHom ( R ^s B ) ) -> P e. Grp )
17 15 16 syl
 |-  ( ph -> P e. Grp )
18 7 simpld
 |-  ( ph -> M e. U )
19 8 simpld
 |-  ( ph -> N e. U )
20 4 9 grpsubcl
 |-  ( ( P e. Grp /\ M e. U /\ N e. U ) -> ( M .- N ) e. U )
21 17 18 19 20 syl3anc
 |-  ( ph -> ( M .- N ) e. U )
22 eqid
 |-  ( -g ` ( R ^s B ) ) = ( -g ` ( R ^s B ) )
23 4 9 22 ghmsub
 |-  ( ( O e. ( P GrpHom ( R ^s B ) ) /\ M e. U /\ N e. U ) -> ( O ` ( M .- N ) ) = ( ( O ` M ) ( -g ` ( R ^s B ) ) ( O ` N ) ) )
24 15 18 19 23 syl3anc
 |-  ( ph -> ( O ` ( M .- N ) ) = ( ( O ` M ) ( -g ` ( R ^s B ) ) ( O ` N ) ) )
25 crngring
 |-  ( R e. CRing -> R e. Ring )
26 ringgrp
 |-  ( R e. Ring -> R e. Grp )
27 5 25 26 3syl
 |-  ( ph -> R e. Grp )
28 3 fvexi
 |-  B e. _V
29 28 a1i
 |-  ( ph -> B e. _V )
30 eqid
 |-  ( Base ` ( R ^s B ) ) = ( Base ` ( R ^s B ) )
31 4 30 rhmf
 |-  ( O e. ( P RingHom ( R ^s B ) ) -> O : U --> ( Base ` ( R ^s B ) ) )
32 13 31 syl
 |-  ( ph -> O : U --> ( Base ` ( R ^s B ) ) )
33 32 18 ffvelrnd
 |-  ( ph -> ( O ` M ) e. ( Base ` ( R ^s B ) ) )
34 32 19 ffvelrnd
 |-  ( ph -> ( O ` N ) e. ( Base ` ( R ^s B ) ) )
35 11 30 10 22 pwssub
 |-  ( ( ( R e. Grp /\ B e. _V ) /\ ( ( O ` M ) e. ( Base ` ( R ^s B ) ) /\ ( O ` N ) e. ( Base ` ( R ^s B ) ) ) ) -> ( ( O ` M ) ( -g ` ( R ^s B ) ) ( O ` N ) ) = ( ( O ` M ) oF D ( O ` N ) ) )
36 27 29 33 34 35 syl22anc
 |-  ( ph -> ( ( O ` M ) ( -g ` ( R ^s B ) ) ( O ` N ) ) = ( ( O ` M ) oF D ( O ` N ) ) )
37 24 36 eqtrd
 |-  ( ph -> ( O ` ( M .- N ) ) = ( ( O ` M ) oF D ( O ` N ) ) )
38 37 fveq1d
 |-  ( ph -> ( ( O ` ( M .- N ) ) ` Y ) = ( ( ( O ` M ) oF D ( O ` N ) ) ` Y ) )
39 11 3 30 5 29 33 pwselbas
 |-  ( ph -> ( O ` M ) : B --> B )
40 39 ffnd
 |-  ( ph -> ( O ` M ) Fn B )
41 11 3 30 5 29 34 pwselbas
 |-  ( ph -> ( O ` N ) : B --> B )
42 41 ffnd
 |-  ( ph -> ( O ` N ) Fn B )
43 fnfvof
 |-  ( ( ( ( O ` M ) Fn B /\ ( O ` N ) Fn B ) /\ ( B e. _V /\ Y e. B ) ) -> ( ( ( O ` M ) oF D ( O ` N ) ) ` Y ) = ( ( ( O ` M ) ` Y ) D ( ( O ` N ) ` Y ) ) )
44 40 42 29 6 43 syl22anc
 |-  ( ph -> ( ( ( O ` M ) oF D ( O ` N ) ) ` Y ) = ( ( ( O ` M ) ` Y ) D ( ( O ` N ) ` Y ) ) )
45 7 simprd
 |-  ( ph -> ( ( O ` M ) ` Y ) = V )
46 8 simprd
 |-  ( ph -> ( ( O ` N ) ` Y ) = W )
47 45 46 oveq12d
 |-  ( ph -> ( ( ( O ` M ) ` Y ) D ( ( O ` N ) ` Y ) ) = ( V D W ) )
48 38 44 47 3eqtrd
 |-  ( ph -> ( ( O ` ( M .- N ) ) ` Y ) = ( V D W ) )
49 21 48 jca
 |-  ( ph -> ( ( M .- N ) e. U /\ ( ( O ` ( M .- N ) ) ` Y ) = ( V D W ) ) )