Step |
Hyp |
Ref |
Expression |
1 |
|
ply1annig1p.o |
|- O = ( E evalSub1 F ) |
2 |
|
ply1annig1p.p |
|- P = ( Poly1 ` ( E |`s F ) ) |
3 |
|
ply1annig1p.b |
|- B = ( Base ` E ) |
4 |
|
ply1annig1p.e |
|- ( ph -> E e. Field ) |
5 |
|
ply1annig1p.f |
|- ( ph -> F e. ( SubDRing ` E ) ) |
6 |
|
ply1annig1p.a |
|- ( ph -> A e. B ) |
7 |
|
minplymindeg.0 |
|- .0. = ( 0g ` E ) |
8 |
|
minplymindeg.m |
|- M = ( E minPoly F ) |
9 |
|
minplymindeg.d |
|- D = ( deg1 ` ( E |`s F ) ) |
10 |
|
minplymindeg.z |
|- Z = ( 0g ` P ) |
11 |
|
minplymindeg.u |
|- U = ( Base ` P ) |
12 |
|
minplymindeg.1 |
|- ( ph -> ( ( O ` H ) ` A ) = .0. ) |
13 |
|
minplymindeg.h |
|- ( ph -> H e. U ) |
14 |
|
minplymindeg.2 |
|- ( ph -> H =/= Z ) |
15 |
|
eqid |
|- { q e. dom O | ( ( O ` q ) ` A ) = .0. } = { q e. dom O | ( ( O ` q ) ` A ) = .0. } |
16 |
|
eqid |
|- ( RSpan ` P ) = ( RSpan ` P ) |
17 |
|
eqid |
|- ( idlGen1p ` ( E |`s F ) ) = ( idlGen1p ` ( E |`s F ) ) |
18 |
1 2 3 4 5 6 7 15 16 17 8
|
minplyval |
|- ( ph -> ( M ` A ) = ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom O | ( ( O ` q ) ` A ) = .0. } ) ) |
19 |
18
|
fveq2d |
|- ( ph -> ( D ` ( M ` A ) ) = ( D ` ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom O | ( ( O ` q ) ` A ) = .0. } ) ) ) |
20 |
|
eqid |
|- ( E |`s F ) = ( E |`s F ) |
21 |
20
|
sdrgdrng |
|- ( F e. ( SubDRing ` E ) -> ( E |`s F ) e. DivRing ) |
22 |
5 21
|
syl |
|- ( ph -> ( E |`s F ) e. DivRing ) |
23 |
4
|
fldcrngd |
|- ( ph -> E e. CRing ) |
24 |
|
sdrgsubrg |
|- ( F e. ( SubDRing ` E ) -> F e. ( SubRing ` E ) ) |
25 |
5 24
|
syl |
|- ( ph -> F e. ( SubRing ` E ) ) |
26 |
1 2 3 23 25 6 7 15
|
ply1annidl |
|- ( ph -> { q e. dom O | ( ( O ` q ) ` A ) = .0. } e. ( LIdeal ` P ) ) |
27 |
|
fveq2 |
|- ( q = H -> ( O ` q ) = ( O ` H ) ) |
28 |
27
|
fveq1d |
|- ( q = H -> ( ( O ` q ) ` A ) = ( ( O ` H ) ` A ) ) |
29 |
28
|
eqeq1d |
|- ( q = H -> ( ( ( O ` q ) ` A ) = .0. <-> ( ( O ` H ) ` A ) = .0. ) ) |
30 |
1 2 11 23 25
|
evls1dm |
|- ( ph -> dom O = U ) |
31 |
13 30
|
eleqtrrd |
|- ( ph -> H e. dom O ) |
32 |
29 31 12
|
elrabd |
|- ( ph -> H e. { q e. dom O | ( ( O ` q ) ` A ) = .0. } ) |
33 |
2 17 11 22 26 9 10 32 14
|
ig1pmindeg |
|- ( ph -> ( D ` ( ( idlGen1p ` ( E |`s F ) ) ` { q e. dom O | ( ( O ` q ) ` A ) = .0. } ) ) <_ ( D ` H ) ) |
34 |
19 33
|
eqbrtrd |
|- ( ph -> ( D ` ( M ` A ) ) <_ ( D ` H ) ) |