Description: A sub-division-ring is a division ring. (Contributed by SN, 19-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sdrgdrng.1 | |- S = ( R |`s A ) |
|
Assertion | sdrgdrng | |- ( A e. ( SubDRing ` R ) -> S e. DivRing ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdrgdrng.1 | |- S = ( R |`s A ) |
|
2 | issdrg | |- ( A e. ( SubDRing ` R ) <-> ( R e. DivRing /\ A e. ( SubRing ` R ) /\ ( R |`s A ) e. DivRing ) ) |
|
3 | 2 | simp3bi | |- ( A e. ( SubDRing ` R ) -> ( R |`s A ) e. DivRing ) |
4 | 1 3 | eqeltrid | |- ( A e. ( SubDRing ` R ) -> S e. DivRing ) |