Metamath Proof Explorer


Theorem sdrgdrng

Description: A sub-division-ring is a division ring. (Contributed by SN, 19-Feb-2025)

Ref Expression
Hypothesis sdrgdrng.1
|- S = ( R |`s A )
Assertion sdrgdrng
|- ( A e. ( SubDRing ` R ) -> S e. DivRing )

Proof

Step Hyp Ref Expression
1 sdrgdrng.1
 |-  S = ( R |`s A )
2 issdrg
 |-  ( A e. ( SubDRing ` R ) <-> ( R e. DivRing /\ A e. ( SubRing ` R ) /\ ( R |`s A ) e. DivRing ) )
3 2 simp3bi
 |-  ( A e. ( SubDRing ` R ) -> ( R |`s A ) e. DivRing )
4 1 3 eqeltrid
 |-  ( A e. ( SubDRing ` R ) -> S e. DivRing )