Description: A sub-division-ring is a division ring. (Contributed by SN, 19-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sdrgdrng.1 | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
Assertion | sdrgdrng | ⊢ ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) → 𝑆 ∈ DivRing ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdrgdrng.1 | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
2 | issdrg | ⊢ ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ↔ ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝐴 ) ∈ DivRing ) ) | |
3 | 2 | simp3bi | ⊢ ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) → ( 𝑅 ↾s 𝐴 ) ∈ DivRing ) |
4 | 1 3 | eqeltrid | ⊢ ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) → 𝑆 ∈ DivRing ) |