Metamath Proof Explorer


Theorem sdrgdrng

Description: A sub-division-ring is a division ring. (Contributed by SN, 19-Feb-2025)

Ref Expression
Hypothesis sdrgdrng.1 𝑆 = ( 𝑅s 𝐴 )
Assertion sdrgdrng ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) → 𝑆 ∈ DivRing )

Proof

Step Hyp Ref Expression
1 sdrgdrng.1 𝑆 = ( 𝑅s 𝐴 )
2 issdrg ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ↔ ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅s 𝐴 ) ∈ DivRing ) )
3 2 simp3bi ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) → ( 𝑅s 𝐴 ) ∈ DivRing )
4 1 3 eqeltrid ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) → 𝑆 ∈ DivRing )