Metamath Proof Explorer


Theorem minplymindeg

Description: The minimal polynomial of A is minimal among the nonzero annihilators of A with regard to degree. (Contributed by Thierry Arnoux, 22-Jun-2025)

Ref Expression
Hypotheses ply1annig1p.o O = E evalSub 1 F
ply1annig1p.p P = Poly 1 E 𝑠 F
ply1annig1p.b B = Base E
ply1annig1p.e φ E Field
ply1annig1p.f φ F SubDRing E
ply1annig1p.a φ A B
minplymindeg.0 0 ˙ = 0 E
minplymindeg.m M = E minPoly F
minplymindeg.d D = deg 1 E 𝑠 F
minplymindeg.z Z = 0 P
minplymindeg.u U = Base P
minplymindeg.1 φ O H A = 0 ˙
minplymindeg.h φ H U
minplymindeg.2 φ H Z
Assertion minplymindeg φ D M A D H

Proof

Step Hyp Ref Expression
1 ply1annig1p.o O = E evalSub 1 F
2 ply1annig1p.p P = Poly 1 E 𝑠 F
3 ply1annig1p.b B = Base E
4 ply1annig1p.e φ E Field
5 ply1annig1p.f φ F SubDRing E
6 ply1annig1p.a φ A B
7 minplymindeg.0 0 ˙ = 0 E
8 minplymindeg.m M = E minPoly F
9 minplymindeg.d D = deg 1 E 𝑠 F
10 minplymindeg.z Z = 0 P
11 minplymindeg.u U = Base P
12 minplymindeg.1 φ O H A = 0 ˙
13 minplymindeg.h φ H U
14 minplymindeg.2 φ H Z
15 eqid q dom O | O q A = 0 ˙ = q dom O | O q A = 0 ˙
16 eqid RSpan P = RSpan P
17 eqid idlGen 1p E 𝑠 F = idlGen 1p E 𝑠 F
18 1 2 3 4 5 6 7 15 16 17 8 minplyval φ M A = idlGen 1p E 𝑠 F q dom O | O q A = 0 ˙
19 18 fveq2d φ D M A = D idlGen 1p E 𝑠 F q dom O | O q A = 0 ˙
20 eqid E 𝑠 F = E 𝑠 F
21 20 sdrgdrng F SubDRing E E 𝑠 F DivRing
22 5 21 syl φ E 𝑠 F DivRing
23 4 fldcrngd φ E CRing
24 sdrgsubrg F SubDRing E F SubRing E
25 5 24 syl φ F SubRing E
26 1 2 3 23 25 6 7 15 ply1annidl φ q dom O | O q A = 0 ˙ LIdeal P
27 fveq2 q = H O q = O H
28 27 fveq1d q = H O q A = O H A
29 28 eqeq1d q = H O q A = 0 ˙ O H A = 0 ˙
30 1 2 11 23 25 evls1dm φ dom O = U
31 13 30 eleqtrrd φ H dom O
32 29 31 12 elrabd φ H q dom O | O q A = 0 ˙
33 2 17 11 22 26 9 10 32 14 ig1pmindeg φ D idlGen 1p E 𝑠 F q dom O | O q A = 0 ˙ D H
34 19 33 eqbrtrd φ D M A D H