Metamath Proof Explorer


Theorem minplyval

Description: Expand the value of the minimal polynomial ( MA ) for a given element A . It is defined as the unique monic polynomial of minimal degree which annihilates A . By ply1annig1p , that polynomial generates the ideal of the annihilators of A . (Contributed by Thierry Arnoux, 9-Feb-2025)

Ref Expression
Hypotheses ply1annig1p.o O = E evalSub 1 F
ply1annig1p.p P = Poly 1 E 𝑠 F
ply1annig1p.b B = Base E
ply1annig1p.e φ E Field
ply1annig1p.f φ F SubDRing E
ply1annig1p.a φ A B
ply1annig1p.0 0 ˙ = 0 E
ply1annig1p.q Q = q dom O | O q A = 0 ˙
ply1annig1p.k K = RSpan P
ply1annig1p.g G = idlGen 1p E 𝑠 F
minplyval.1 M = E minPoly F
Assertion minplyval φ M A = G Q

Proof

Step Hyp Ref Expression
1 ply1annig1p.o O = E evalSub 1 F
2 ply1annig1p.p P = Poly 1 E 𝑠 F
3 ply1annig1p.b B = Base E
4 ply1annig1p.e φ E Field
5 ply1annig1p.f φ F SubDRing E
6 ply1annig1p.a φ A B
7 ply1annig1p.0 0 ˙ = 0 E
8 ply1annig1p.q Q = q dom O | O q A = 0 ˙
9 ply1annig1p.k K = RSpan P
10 ply1annig1p.g G = idlGen 1p E 𝑠 F
11 minplyval.1 M = E minPoly F
12 4 elexd φ E V
13 5 elexd φ F V
14 3 fvexi B V
15 14 a1i φ B V
16 15 mptexd φ x B G q dom O | O q x = 0 ˙ V
17 fveq2 e = E Base e = Base E
18 17 3 eqtr4di e = E Base e = B
19 18 adantr e = E f = F Base e = B
20 oveq12 e = E f = F e 𝑠 f = E 𝑠 F
21 20 fveq2d e = E f = F idlGen 1p e 𝑠 f = idlGen 1p E 𝑠 F
22 21 10 eqtr4di e = E f = F idlGen 1p e 𝑠 f = G
23 oveq12 e = E f = F e evalSub 1 f = E evalSub 1 F
24 23 1 eqtr4di e = E f = F e evalSub 1 f = O
25 24 dmeqd e = E f = F dom e evalSub 1 f = dom O
26 24 fveq1d e = E f = F e evalSub 1 f q = O q
27 26 fveq1d e = E f = F e evalSub 1 f q x = O q x
28 fveq2 e = E 0 e = 0 E
29 28 adantr e = E f = F 0 e = 0 E
30 29 7 eqtr4di e = E f = F 0 e = 0 ˙
31 27 30 eqeq12d e = E f = F e evalSub 1 f q x = 0 e O q x = 0 ˙
32 25 31 rabeqbidv e = E f = F q dom e evalSub 1 f | e evalSub 1 f q x = 0 e = q dom O | O q x = 0 ˙
33 22 32 fveq12d e = E f = F idlGen 1p e 𝑠 f q dom e evalSub 1 f | e evalSub 1 f q x = 0 e = G q dom O | O q x = 0 ˙
34 19 33 mpteq12dv e = E f = F x Base e idlGen 1p e 𝑠 f q dom e evalSub 1 f | e evalSub 1 f q x = 0 e = x B G q dom O | O q x = 0 ˙
35 df-minply minPoly = e V , f V x Base e idlGen 1p e 𝑠 f q dom e evalSub 1 f | e evalSub 1 f q x = 0 e
36 34 35 ovmpoga E V F V x B G q dom O | O q x = 0 ˙ V E minPoly F = x B G q dom O | O q x = 0 ˙
37 12 13 16 36 syl3anc φ E minPoly F = x B G q dom O | O q x = 0 ˙
38 11 37 eqtrid φ M = x B G q dom O | O q x = 0 ˙
39 fveqeq2 x = A O q x = 0 ˙ O q A = 0 ˙
40 39 rabbidv x = A q dom O | O q x = 0 ˙ = q dom O | O q A = 0 ˙
41 40 8 eqtr4di x = A q dom O | O q x = 0 ˙ = Q
42 41 fveq2d x = A G q dom O | O q x = 0 ˙ = G Q
43 42 adantl φ x = A G q dom O | O q x = 0 ˙ = G Q
44 fvexd φ G Q V
45 38 43 6 44 fvmptd φ M A = G Q