Step |
Hyp |
Ref |
Expression |
1 |
|
ply1annig1p.o |
|- O = ( E evalSub1 F ) |
2 |
|
ply1annig1p.p |
|- P = ( Poly1 ` ( E |`s F ) ) |
3 |
|
ply1annig1p.b |
|- B = ( Base ` E ) |
4 |
|
ply1annig1p.e |
|- ( ph -> E e. Field ) |
5 |
|
ply1annig1p.f |
|- ( ph -> F e. ( SubDRing ` E ) ) |
6 |
|
ply1annig1p.a |
|- ( ph -> A e. B ) |
7 |
|
ply1annig1p.0 |
|- .0. = ( 0g ` E ) |
8 |
|
ply1annig1p.q |
|- Q = { q e. dom O | ( ( O ` q ) ` A ) = .0. } |
9 |
|
ply1annig1p.k |
|- K = ( RSpan ` P ) |
10 |
|
ply1annig1p.g |
|- G = ( idlGen1p ` ( E |`s F ) ) |
11 |
|
minplyval.1 |
|- M = ( E minPoly F ) |
12 |
4
|
elexd |
|- ( ph -> E e. _V ) |
13 |
5
|
elexd |
|- ( ph -> F e. _V ) |
14 |
3
|
fvexi |
|- B e. _V |
15 |
14
|
a1i |
|- ( ph -> B e. _V ) |
16 |
15
|
mptexd |
|- ( ph -> ( x e. B |-> ( G ` { q e. dom O | ( ( O ` q ) ` x ) = .0. } ) ) e. _V ) |
17 |
|
fveq2 |
|- ( e = E -> ( Base ` e ) = ( Base ` E ) ) |
18 |
17 3
|
eqtr4di |
|- ( e = E -> ( Base ` e ) = B ) |
19 |
18
|
adantr |
|- ( ( e = E /\ f = F ) -> ( Base ` e ) = B ) |
20 |
|
oveq12 |
|- ( ( e = E /\ f = F ) -> ( e |`s f ) = ( E |`s F ) ) |
21 |
20
|
fveq2d |
|- ( ( e = E /\ f = F ) -> ( idlGen1p ` ( e |`s f ) ) = ( idlGen1p ` ( E |`s F ) ) ) |
22 |
21 10
|
eqtr4di |
|- ( ( e = E /\ f = F ) -> ( idlGen1p ` ( e |`s f ) ) = G ) |
23 |
|
oveq12 |
|- ( ( e = E /\ f = F ) -> ( e evalSub1 f ) = ( E evalSub1 F ) ) |
24 |
23 1
|
eqtr4di |
|- ( ( e = E /\ f = F ) -> ( e evalSub1 f ) = O ) |
25 |
24
|
dmeqd |
|- ( ( e = E /\ f = F ) -> dom ( e evalSub1 f ) = dom O ) |
26 |
24
|
fveq1d |
|- ( ( e = E /\ f = F ) -> ( ( e evalSub1 f ) ` q ) = ( O ` q ) ) |
27 |
26
|
fveq1d |
|- ( ( e = E /\ f = F ) -> ( ( ( e evalSub1 f ) ` q ) ` x ) = ( ( O ` q ) ` x ) ) |
28 |
|
fveq2 |
|- ( e = E -> ( 0g ` e ) = ( 0g ` E ) ) |
29 |
28
|
adantr |
|- ( ( e = E /\ f = F ) -> ( 0g ` e ) = ( 0g ` E ) ) |
30 |
29 7
|
eqtr4di |
|- ( ( e = E /\ f = F ) -> ( 0g ` e ) = .0. ) |
31 |
27 30
|
eqeq12d |
|- ( ( e = E /\ f = F ) -> ( ( ( ( e evalSub1 f ) ` q ) ` x ) = ( 0g ` e ) <-> ( ( O ` q ) ` x ) = .0. ) ) |
32 |
25 31
|
rabeqbidv |
|- ( ( e = E /\ f = F ) -> { q e. dom ( e evalSub1 f ) | ( ( ( e evalSub1 f ) ` q ) ` x ) = ( 0g ` e ) } = { q e. dom O | ( ( O ` q ) ` x ) = .0. } ) |
33 |
22 32
|
fveq12d |
|- ( ( e = E /\ f = F ) -> ( ( idlGen1p ` ( e |`s f ) ) ` { q e. dom ( e evalSub1 f ) | ( ( ( e evalSub1 f ) ` q ) ` x ) = ( 0g ` e ) } ) = ( G ` { q e. dom O | ( ( O ` q ) ` x ) = .0. } ) ) |
34 |
19 33
|
mpteq12dv |
|- ( ( e = E /\ f = F ) -> ( x e. ( Base ` e ) |-> ( ( idlGen1p ` ( e |`s f ) ) ` { q e. dom ( e evalSub1 f ) | ( ( ( e evalSub1 f ) ` q ) ` x ) = ( 0g ` e ) } ) ) = ( x e. B |-> ( G ` { q e. dom O | ( ( O ` q ) ` x ) = .0. } ) ) ) |
35 |
|
df-minply |
|- minPoly = ( e e. _V , f e. _V |-> ( x e. ( Base ` e ) |-> ( ( idlGen1p ` ( e |`s f ) ) ` { q e. dom ( e evalSub1 f ) | ( ( ( e evalSub1 f ) ` q ) ` x ) = ( 0g ` e ) } ) ) ) |
36 |
34 35
|
ovmpoga |
|- ( ( E e. _V /\ F e. _V /\ ( x e. B |-> ( G ` { q e. dom O | ( ( O ` q ) ` x ) = .0. } ) ) e. _V ) -> ( E minPoly F ) = ( x e. B |-> ( G ` { q e. dom O | ( ( O ` q ) ` x ) = .0. } ) ) ) |
37 |
12 13 16 36
|
syl3anc |
|- ( ph -> ( E minPoly F ) = ( x e. B |-> ( G ` { q e. dom O | ( ( O ` q ) ` x ) = .0. } ) ) ) |
38 |
11 37
|
eqtrid |
|- ( ph -> M = ( x e. B |-> ( G ` { q e. dom O | ( ( O ` q ) ` x ) = .0. } ) ) ) |
39 |
|
fveqeq2 |
|- ( x = A -> ( ( ( O ` q ) ` x ) = .0. <-> ( ( O ` q ) ` A ) = .0. ) ) |
40 |
39
|
rabbidv |
|- ( x = A -> { q e. dom O | ( ( O ` q ) ` x ) = .0. } = { q e. dom O | ( ( O ` q ) ` A ) = .0. } ) |
41 |
40 8
|
eqtr4di |
|- ( x = A -> { q e. dom O | ( ( O ` q ) ` x ) = .0. } = Q ) |
42 |
41
|
fveq2d |
|- ( x = A -> ( G ` { q e. dom O | ( ( O ` q ) ` x ) = .0. } ) = ( G ` Q ) ) |
43 |
42
|
adantl |
|- ( ( ph /\ x = A ) -> ( G ` { q e. dom O | ( ( O ` q ) ` x ) = .0. } ) = ( G ` Q ) ) |
44 |
|
fvexd |
|- ( ph -> ( G ` Q ) e. _V ) |
45 |
38 43 6 44
|
fvmptd |
|- ( ph -> ( M ` A ) = ( G ` Q ) ) |