Step |
Hyp |
Ref |
Expression |
0 |
|
cminply |
|- minPoly |
1 |
|
ve |
|- e |
2 |
|
cvv |
|- _V |
3 |
|
vf |
|- f |
4 |
|
vx |
|- x |
5 |
|
cbs |
|- Base |
6 |
1
|
cv |
|- e |
7 |
6 5
|
cfv |
|- ( Base ` e ) |
8 |
|
cig1p |
|- idlGen1p |
9 |
|
cress |
|- |`s |
10 |
3
|
cv |
|- f |
11 |
6 10 9
|
co |
|- ( e |`s f ) |
12 |
11 8
|
cfv |
|- ( idlGen1p ` ( e |`s f ) ) |
13 |
|
vp |
|- p |
14 |
|
ces1 |
|- evalSub1 |
15 |
6 10 14
|
co |
|- ( e evalSub1 f ) |
16 |
15
|
cdm |
|- dom ( e evalSub1 f ) |
17 |
13
|
cv |
|- p |
18 |
17 15
|
cfv |
|- ( ( e evalSub1 f ) ` p ) |
19 |
4
|
cv |
|- x |
20 |
19 18
|
cfv |
|- ( ( ( e evalSub1 f ) ` p ) ` x ) |
21 |
|
c0g |
|- 0g |
22 |
6 21
|
cfv |
|- ( 0g ` e ) |
23 |
20 22
|
wceq |
|- ( ( ( e evalSub1 f ) ` p ) ` x ) = ( 0g ` e ) |
24 |
23 13 16
|
crab |
|- { p e. dom ( e evalSub1 f ) | ( ( ( e evalSub1 f ) ` p ) ` x ) = ( 0g ` e ) } |
25 |
24 12
|
cfv |
|- ( ( idlGen1p ` ( e |`s f ) ) ` { p e. dom ( e evalSub1 f ) | ( ( ( e evalSub1 f ) ` p ) ` x ) = ( 0g ` e ) } ) |
26 |
4 7 25
|
cmpt |
|- ( x e. ( Base ` e ) |-> ( ( idlGen1p ` ( e |`s f ) ) ` { p e. dom ( e evalSub1 f ) | ( ( ( e evalSub1 f ) ` p ) ` x ) = ( 0g ` e ) } ) ) |
27 |
1 3 2 2 26
|
cmpo |
|- ( e e. _V , f e. _V |-> ( x e. ( Base ` e ) |-> ( ( idlGen1p ` ( e |`s f ) ) ` { p e. dom ( e evalSub1 f ) | ( ( ( e evalSub1 f ) ` p ) ` x ) = ( 0g ` e ) } ) ) ) |
28 |
0 27
|
wceq |
|- minPoly = ( e e. _V , f e. _V |-> ( x e. ( Base ` e ) |-> ( ( idlGen1p ` ( e |`s f ) ) ` { p e. dom ( e evalSub1 f ) | ( ( ( e evalSub1 f ) ` p ) ` x ) = ( 0g ` e ) } ) ) ) |