| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cminply |
|- minPoly |
| 1 |
|
ve |
|- e |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vf |
|- f |
| 4 |
|
vx |
|- x |
| 5 |
|
cbs |
|- Base |
| 6 |
1
|
cv |
|- e |
| 7 |
6 5
|
cfv |
|- ( Base ` e ) |
| 8 |
|
cig1p |
|- idlGen1p |
| 9 |
|
cress |
|- |`s |
| 10 |
3
|
cv |
|- f |
| 11 |
6 10 9
|
co |
|- ( e |`s f ) |
| 12 |
11 8
|
cfv |
|- ( idlGen1p ` ( e |`s f ) ) |
| 13 |
|
vp |
|- p |
| 14 |
|
ces1 |
|- evalSub1 |
| 15 |
6 10 14
|
co |
|- ( e evalSub1 f ) |
| 16 |
15
|
cdm |
|- dom ( e evalSub1 f ) |
| 17 |
13
|
cv |
|- p |
| 18 |
17 15
|
cfv |
|- ( ( e evalSub1 f ) ` p ) |
| 19 |
4
|
cv |
|- x |
| 20 |
19 18
|
cfv |
|- ( ( ( e evalSub1 f ) ` p ) ` x ) |
| 21 |
|
c0g |
|- 0g |
| 22 |
6 21
|
cfv |
|- ( 0g ` e ) |
| 23 |
20 22
|
wceq |
|- ( ( ( e evalSub1 f ) ` p ) ` x ) = ( 0g ` e ) |
| 24 |
23 13 16
|
crab |
|- { p e. dom ( e evalSub1 f ) | ( ( ( e evalSub1 f ) ` p ) ` x ) = ( 0g ` e ) } |
| 25 |
24 12
|
cfv |
|- ( ( idlGen1p ` ( e |`s f ) ) ` { p e. dom ( e evalSub1 f ) | ( ( ( e evalSub1 f ) ` p ) ` x ) = ( 0g ` e ) } ) |
| 26 |
4 7 25
|
cmpt |
|- ( x e. ( Base ` e ) |-> ( ( idlGen1p ` ( e |`s f ) ) ` { p e. dom ( e evalSub1 f ) | ( ( ( e evalSub1 f ) ` p ) ` x ) = ( 0g ` e ) } ) ) |
| 27 |
1 3 2 2 26
|
cmpo |
|- ( e e. _V , f e. _V |-> ( x e. ( Base ` e ) |-> ( ( idlGen1p ` ( e |`s f ) ) ` { p e. dom ( e evalSub1 f ) | ( ( ( e evalSub1 f ) ` p ) ` x ) = ( 0g ` e ) } ) ) ) |
| 28 |
0 27
|
wceq |
|- minPoly = ( e e. _V , f e. _V |-> ( x e. ( Base ` e ) |-> ( ( idlGen1p ` ( e |`s f ) ) ` { p e. dom ( e evalSub1 f ) | ( ( ( e evalSub1 f ) ` p ) ` x ) = ( 0g ` e ) } ) ) ) |