Step |
Hyp |
Ref |
Expression |
1 |
|
ply1annidl.o |
|- O = ( R evalSub1 S ) |
2 |
|
ply1annidl.p |
|- P = ( Poly1 ` ( R |`s S ) ) |
3 |
|
ply1annidl.b |
|- B = ( Base ` R ) |
4 |
|
ply1annidl.r |
|- ( ph -> R e. CRing ) |
5 |
|
ply1annidl.s |
|- ( ph -> S e. ( SubRing ` R ) ) |
6 |
|
ply1annidl.a |
|- ( ph -> A e. B ) |
7 |
|
ply1annidl.0 |
|- .0. = ( 0g ` R ) |
8 |
|
ply1annidl.q |
|- Q = { q e. dom O | ( ( O ` q ) ` A ) = .0. } |
9 |
|
ply1annidllem.f |
|- F = ( p e. ( Base ` P ) |-> ( ( O ` p ) ` A ) ) |
10 |
|
nfv |
|- F/ p ph |
11 |
|
fvexd |
|- ( ( ph /\ p e. ( Base ` P ) ) -> ( ( O ` p ) ` A ) e. _V ) |
12 |
10 11 9
|
fnmptd |
|- ( ph -> F Fn ( Base ` P ) ) |
13 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
14 |
1 2 13 4 5
|
evls1fn |
|- ( ph -> O Fn ( Base ` P ) ) |
15 |
14
|
fndmd |
|- ( ph -> dom O = ( Base ` P ) ) |
16 |
15
|
fneq2d |
|- ( ph -> ( F Fn dom O <-> F Fn ( Base ` P ) ) ) |
17 |
12 16
|
mpbird |
|- ( ph -> F Fn dom O ) |
18 |
|
fniniseg2 |
|- ( F Fn dom O -> ( `' F " { .0. } ) = { q e. dom O | ( F ` q ) = .0. } ) |
19 |
17 18
|
syl |
|- ( ph -> ( `' F " { .0. } ) = { q e. dom O | ( F ` q ) = .0. } ) |
20 |
|
fveq2 |
|- ( p = q -> ( O ` p ) = ( O ` q ) ) |
21 |
20
|
fveq1d |
|- ( p = q -> ( ( O ` p ) ` A ) = ( ( O ` q ) ` A ) ) |
22 |
15
|
eleq2d |
|- ( ph -> ( q e. dom O <-> q e. ( Base ` P ) ) ) |
23 |
22
|
biimpa |
|- ( ( ph /\ q e. dom O ) -> q e. ( Base ` P ) ) |
24 |
|
fvexd |
|- ( ( ph /\ q e. dom O ) -> ( ( O ` q ) ` A ) e. _V ) |
25 |
9 21 23 24
|
fvmptd3 |
|- ( ( ph /\ q e. dom O ) -> ( F ` q ) = ( ( O ` q ) ` A ) ) |
26 |
25
|
eqeq1d |
|- ( ( ph /\ q e. dom O ) -> ( ( F ` q ) = .0. <-> ( ( O ` q ) ` A ) = .0. ) ) |
27 |
26
|
rabbidva |
|- ( ph -> { q e. dom O | ( F ` q ) = .0. } = { q e. dom O | ( ( O ` q ) ` A ) = .0. } ) |
28 |
19 27
|
eqtr2d |
|- ( ph -> { q e. dom O | ( ( O ` q ) ` A ) = .0. } = ( `' F " { .0. } ) ) |
29 |
8 28
|
eqtrid |
|- ( ph -> Q = ( `' F " { .0. } ) ) |