Step |
Hyp |
Ref |
Expression |
1 |
|
ply1annidl.o |
⊢ 𝑂 = ( 𝑅 evalSub1 𝑆 ) |
2 |
|
ply1annidl.p |
⊢ 𝑃 = ( Poly1 ‘ ( 𝑅 ↾s 𝑆 ) ) |
3 |
|
ply1annidl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
4 |
|
ply1annidl.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
5 |
|
ply1annidl.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
6 |
|
ply1annidl.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
7 |
|
ply1annidl.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
8 |
|
ply1annidl.q |
⊢ 𝑄 = { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } |
9 |
|
ply1annidllem.f |
⊢ 𝐹 = ( 𝑝 ∈ ( Base ‘ 𝑃 ) ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) ) |
10 |
|
nfv |
⊢ Ⅎ 𝑝 𝜑 |
11 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) ∈ V ) |
12 |
10 11 9
|
fnmptd |
⊢ ( 𝜑 → 𝐹 Fn ( Base ‘ 𝑃 ) ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
14 |
1 2 13 4 5
|
evls1fn |
⊢ ( 𝜑 → 𝑂 Fn ( Base ‘ 𝑃 ) ) |
15 |
14
|
fndmd |
⊢ ( 𝜑 → dom 𝑂 = ( Base ‘ 𝑃 ) ) |
16 |
15
|
fneq2d |
⊢ ( 𝜑 → ( 𝐹 Fn dom 𝑂 ↔ 𝐹 Fn ( Base ‘ 𝑃 ) ) ) |
17 |
12 16
|
mpbird |
⊢ ( 𝜑 → 𝐹 Fn dom 𝑂 ) |
18 |
|
fniniseg2 |
⊢ ( 𝐹 Fn dom 𝑂 → ( ◡ 𝐹 “ { 0 } ) = { 𝑞 ∈ dom 𝑂 ∣ ( 𝐹 ‘ 𝑞 ) = 0 } ) |
19 |
17 18
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ { 0 } ) = { 𝑞 ∈ dom 𝑂 ∣ ( 𝐹 ‘ 𝑞 ) = 0 } ) |
20 |
|
fveq2 |
⊢ ( 𝑝 = 𝑞 → ( 𝑂 ‘ 𝑝 ) = ( 𝑂 ‘ 𝑞 ) ) |
21 |
20
|
fveq1d |
⊢ ( 𝑝 = 𝑞 → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) = ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) ) |
22 |
15
|
eleq2d |
⊢ ( 𝜑 → ( 𝑞 ∈ dom 𝑂 ↔ 𝑞 ∈ ( Base ‘ 𝑃 ) ) ) |
23 |
22
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ dom 𝑂 ) → 𝑞 ∈ ( Base ‘ 𝑃 ) ) |
24 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ dom 𝑂 ) → ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) ∈ V ) |
25 |
9 21 23 24
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ dom 𝑂 ) → ( 𝐹 ‘ 𝑞 ) = ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) ) |
26 |
25
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ dom 𝑂 ) → ( ( 𝐹 ‘ 𝑞 ) = 0 ↔ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 ) ) |
27 |
26
|
rabbidva |
⊢ ( 𝜑 → { 𝑞 ∈ dom 𝑂 ∣ ( 𝐹 ‘ 𝑞 ) = 0 } = { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } ) |
28 |
19 27
|
eqtr2d |
⊢ ( 𝜑 → { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } = ( ◡ 𝐹 “ { 0 } ) ) |
29 |
8 28
|
eqtrid |
⊢ ( 𝜑 → 𝑄 = ( ◡ 𝐹 “ { 0 } ) ) |