| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1annidl.o |
⊢ 𝑂 = ( 𝑅 evalSub1 𝑆 ) |
| 2 |
|
ply1annidl.p |
⊢ 𝑃 = ( Poly1 ‘ ( 𝑅 ↾s 𝑆 ) ) |
| 3 |
|
ply1annidl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 4 |
|
ply1annidl.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 5 |
|
ply1annidl.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
| 6 |
|
ply1annidl.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
| 7 |
|
ply1annidl.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 8 |
|
ply1annidl.q |
⊢ 𝑄 = { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } |
| 9 |
|
eqid |
⊢ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) ) = ( 𝑝 ∈ ( Base ‘ 𝑃 ) ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) ) |
| 10 |
1 2 3 4 5 6 7 8 9
|
ply1annidllem |
⊢ ( 𝜑 → 𝑄 = ( ◡ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) ) “ { 0 } ) ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 12 |
1 2 3 11 4 5 6 9
|
evls1maprhm |
⊢ ( 𝜑 → ( 𝑝 ∈ ( Base ‘ 𝑃 ) ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) ) ∈ ( 𝑃 RingHom 𝑅 ) ) |
| 13 |
4
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 14 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
| 15 |
14 7
|
lidl0 |
⊢ ( 𝑅 ∈ Ring → { 0 } ∈ ( LIdeal ‘ 𝑅 ) ) |
| 16 |
13 15
|
syl |
⊢ ( 𝜑 → { 0 } ∈ ( LIdeal ‘ 𝑅 ) ) |
| 17 |
|
eqid |
⊢ ( LIdeal ‘ 𝑃 ) = ( LIdeal ‘ 𝑃 ) |
| 18 |
17
|
rhmpreimaidl |
⊢ ( ( ( 𝑝 ∈ ( Base ‘ 𝑃 ) ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) ) ∈ ( 𝑃 RingHom 𝑅 ) ∧ { 0 } ∈ ( LIdeal ‘ 𝑅 ) ) → ( ◡ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) ) “ { 0 } ) ∈ ( LIdeal ‘ 𝑃 ) ) |
| 19 |
12 16 18
|
syl2anc |
⊢ ( 𝜑 → ( ◡ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) ) “ { 0 } ) ∈ ( LIdeal ‘ 𝑃 ) ) |
| 20 |
10 19
|
eqeltrd |
⊢ ( 𝜑 → 𝑄 ∈ ( LIdeal ‘ 𝑃 ) ) |