Metamath Proof Explorer


Theorem ply1annnr

Description: The set Q of polynomials annihilating an element A is not the whole polynomial ring. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses ply1annidl.o 𝑂 = ( 𝑅 evalSub1 𝑆 )
ply1annidl.p 𝑃 = ( Poly1 ‘ ( 𝑅s 𝑆 ) )
ply1annidl.b 𝐵 = ( Base ‘ 𝑅 )
ply1annidl.r ( 𝜑𝑅 ∈ CRing )
ply1annidl.s ( 𝜑𝑆 ∈ ( SubRing ‘ 𝑅 ) )
ply1annidl.a ( 𝜑𝐴𝐵 )
ply1annidl.0 0 = ( 0g𝑅 )
ply1annidl.q 𝑄 = { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂𝑞 ) ‘ 𝐴 ) = 0 }
ply1annnr.u 𝑈 = ( Base ‘ 𝑃 )
ply1annnr.1 ( 𝜑𝑅 ∈ NzRing )
Assertion ply1annnr ( 𝜑𝑄𝑈 )

Proof

Step Hyp Ref Expression
1 ply1annidl.o 𝑂 = ( 𝑅 evalSub1 𝑆 )
2 ply1annidl.p 𝑃 = ( Poly1 ‘ ( 𝑅s 𝑆 ) )
3 ply1annidl.b 𝐵 = ( Base ‘ 𝑅 )
4 ply1annidl.r ( 𝜑𝑅 ∈ CRing )
5 ply1annidl.s ( 𝜑𝑆 ∈ ( SubRing ‘ 𝑅 ) )
6 ply1annidl.a ( 𝜑𝐴𝐵 )
7 ply1annidl.0 0 = ( 0g𝑅 )
8 ply1annidl.q 𝑄 = { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂𝑞 ) ‘ 𝐴 ) = 0 }
9 ply1annnr.u 𝑈 = ( Base ‘ 𝑃 )
10 ply1annnr.1 ( 𝜑𝑅 ∈ NzRing )
11 8 a1i ( 𝜑𝑄 = { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂𝑞 ) ‘ 𝐴 ) = 0 } )
12 4 crngringd ( 𝜑𝑅 ∈ Ring )
13 eqid ( 1r𝑅 ) = ( 1r𝑅 )
14 13 subrg1cl ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → ( 1r𝑅 ) ∈ 𝑆 )
15 5 14 syl ( 𝜑 → ( 1r𝑅 ) ∈ 𝑆 )
16 3 subrgss ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → 𝑆𝐵 )
17 5 16 syl ( 𝜑𝑆𝐵 )
18 eqid ( 𝑅s 𝑆 ) = ( 𝑅s 𝑆 )
19 18 3 13 ress1r ( ( 𝑅 ∈ Ring ∧ ( 1r𝑅 ) ∈ 𝑆𝑆𝐵 ) → ( 1r𝑅 ) = ( 1r ‘ ( 𝑅s 𝑆 ) ) )
20 12 15 17 19 syl3anc ( 𝜑 → ( 1r𝑅 ) = ( 1r ‘ ( 𝑅s 𝑆 ) ) )
21 20 fveq2d ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( 1r𝑅 ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ ( 𝑅s 𝑆 ) ) ) )
22 eqid ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 )
23 eqid ( 1r ‘ ( 𝑅s 𝑆 ) ) = ( 1r ‘ ( 𝑅s 𝑆 ) )
24 eqid ( 1r𝑃 ) = ( 1r𝑃 )
25 18 subrgring ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑅s 𝑆 ) ∈ Ring )
26 5 25 syl ( 𝜑 → ( 𝑅s 𝑆 ) ∈ Ring )
27 2 22 23 24 26 ply1ascl1 ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ ( 𝑅s 𝑆 ) ) ) = ( 1r𝑃 ) )
28 21 27 eqtrd ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( 1r𝑅 ) ) = ( 1r𝑃 ) )
29 2 ply1ring ( ( 𝑅s 𝑆 ) ∈ Ring → 𝑃 ∈ Ring )
30 9 24 ringidcl ( 𝑃 ∈ Ring → ( 1r𝑃 ) ∈ 𝑈 )
31 26 29 30 3syl ( 𝜑 → ( 1r𝑃 ) ∈ 𝑈 )
32 28 31 eqeltrd ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( 1r𝑅 ) ) ∈ 𝑈 )
33 1 2 18 3 22 4 5 15 6 evls1scafv ( 𝜑 → ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r𝑅 ) ) ) ‘ 𝐴 ) = ( 1r𝑅 ) )
34 13 7 nzrnz ( 𝑅 ∈ NzRing → ( 1r𝑅 ) ≠ 0 )
35 10 34 syl ( 𝜑 → ( 1r𝑅 ) ≠ 0 )
36 33 35 eqnetrd ( 𝜑 → ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r𝑅 ) ) ) ‘ 𝐴 ) ≠ 0 )
37 36 neneqd ( 𝜑 → ¬ ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r𝑅 ) ) ) ‘ 𝐴 ) = 0 )
38 fveq2 ( 𝑞 = ( ( algSc ‘ 𝑃 ) ‘ ( 1r𝑅 ) ) → ( 𝑂𝑞 ) = ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r𝑅 ) ) ) )
39 38 fveq1d ( 𝑞 = ( ( algSc ‘ 𝑃 ) ‘ ( 1r𝑅 ) ) → ( ( 𝑂𝑞 ) ‘ 𝐴 ) = ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r𝑅 ) ) ) ‘ 𝐴 ) )
40 39 eqeq1d ( 𝑞 = ( ( algSc ‘ 𝑃 ) ‘ ( 1r𝑅 ) ) → ( ( ( 𝑂𝑞 ) ‘ 𝐴 ) = 0 ↔ ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r𝑅 ) ) ) ‘ 𝐴 ) = 0 ) )
41 40 elrab ( ( ( algSc ‘ 𝑃 ) ‘ ( 1r𝑅 ) ) ∈ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂𝑞 ) ‘ 𝐴 ) = 0 } ↔ ( ( ( algSc ‘ 𝑃 ) ‘ ( 1r𝑅 ) ) ∈ dom 𝑂 ∧ ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r𝑅 ) ) ) ‘ 𝐴 ) = 0 ) )
42 41 simprbi ( ( ( algSc ‘ 𝑃 ) ‘ ( 1r𝑅 ) ) ∈ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂𝑞 ) ‘ 𝐴 ) = 0 } → ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r𝑅 ) ) ) ‘ 𝐴 ) = 0 )
43 37 42 nsyl ( 𝜑 → ¬ ( ( algSc ‘ 𝑃 ) ‘ ( 1r𝑅 ) ) ∈ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂𝑞 ) ‘ 𝐴 ) = 0 } )
44 nelne1 ( ( ( ( algSc ‘ 𝑃 ) ‘ ( 1r𝑅 ) ) ∈ 𝑈 ∧ ¬ ( ( algSc ‘ 𝑃 ) ‘ ( 1r𝑅 ) ) ∈ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂𝑞 ) ‘ 𝐴 ) = 0 } ) → 𝑈 ≠ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂𝑞 ) ‘ 𝐴 ) = 0 } )
45 32 43 44 syl2anc ( 𝜑𝑈 ≠ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂𝑞 ) ‘ 𝐴 ) = 0 } )
46 45 necomd ( 𝜑 → { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂𝑞 ) ‘ 𝐴 ) = 0 } ≠ 𝑈 )
47 11 46 eqnetrd ( 𝜑𝑄𝑈 )