| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1annidl.o |
⊢ 𝑂 = ( 𝑅 evalSub1 𝑆 ) |
| 2 |
|
ply1annidl.p |
⊢ 𝑃 = ( Poly1 ‘ ( 𝑅 ↾s 𝑆 ) ) |
| 3 |
|
ply1annidl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 4 |
|
ply1annidl.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 5 |
|
ply1annidl.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
| 6 |
|
ply1annidl.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
| 7 |
|
ply1annidl.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 8 |
|
ply1annidl.q |
⊢ 𝑄 = { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } |
| 9 |
|
ply1annnr.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
| 10 |
|
ply1annnr.1 |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |
| 11 |
8
|
a1i |
⊢ ( 𝜑 → 𝑄 = { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } ) |
| 12 |
4
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 13 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 14 |
13
|
subrg1cl |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) ∈ 𝑆 ) |
| 15 |
5 14
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ 𝑆 ) |
| 16 |
3
|
subrgss |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ⊆ 𝐵 ) |
| 17 |
5 16
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
| 18 |
|
eqid |
⊢ ( 𝑅 ↾s 𝑆 ) = ( 𝑅 ↾s 𝑆 ) |
| 19 |
18 3 13
|
ress1r |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ∈ 𝑆 ∧ 𝑆 ⊆ 𝐵 ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ ( 𝑅 ↾s 𝑆 ) ) ) |
| 20 |
12 15 17 19
|
syl3anc |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( 1r ‘ ( 𝑅 ↾s 𝑆 ) ) ) |
| 21 |
20
|
fveq2d |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ ( 𝑅 ↾s 𝑆 ) ) ) ) |
| 22 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
| 23 |
|
eqid |
⊢ ( 1r ‘ ( 𝑅 ↾s 𝑆 ) ) = ( 1r ‘ ( 𝑅 ↾s 𝑆 ) ) |
| 24 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
| 25 |
18
|
subrgring |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑅 ↾s 𝑆 ) ∈ Ring ) |
| 26 |
5 25
|
syl |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝑆 ) ∈ Ring ) |
| 27 |
2 22 23 24 26
|
ply1ascl1 |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ ( 𝑅 ↾s 𝑆 ) ) ) = ( 1r ‘ 𝑃 ) ) |
| 28 |
21 27
|
eqtrd |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑃 ) ) |
| 29 |
2
|
ply1ring |
⊢ ( ( 𝑅 ↾s 𝑆 ) ∈ Ring → 𝑃 ∈ Ring ) |
| 30 |
9 24
|
ringidcl |
⊢ ( 𝑃 ∈ Ring → ( 1r ‘ 𝑃 ) ∈ 𝑈 ) |
| 31 |
26 29 30
|
3syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) ∈ 𝑈 ) |
| 32 |
28 31
|
eqeltrd |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝑈 ) |
| 33 |
1 2 18 3 22 4 5 15 6
|
evls1scafv |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ‘ 𝐴 ) = ( 1r ‘ 𝑅 ) ) |
| 34 |
13 7
|
nzrnz |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ≠ 0 ) |
| 35 |
10 34
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ≠ 0 ) |
| 36 |
33 35
|
eqnetrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ‘ 𝐴 ) ≠ 0 ) |
| 37 |
36
|
neneqd |
⊢ ( 𝜑 → ¬ ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ‘ 𝐴 ) = 0 ) |
| 38 |
|
fveq2 |
⊢ ( 𝑞 = ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) → ( 𝑂 ‘ 𝑞 ) = ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
| 39 |
38
|
fveq1d |
⊢ ( 𝑞 = ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) → ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ‘ 𝐴 ) ) |
| 40 |
39
|
eqeq1d |
⊢ ( 𝑞 = ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) → ( ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 ↔ ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ‘ 𝐴 ) = 0 ) ) |
| 41 |
40
|
elrab |
⊢ ( ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } ↔ ( ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ dom 𝑂 ∧ ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ‘ 𝐴 ) = 0 ) ) |
| 42 |
41
|
simprbi |
⊢ ( ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } → ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ‘ 𝐴 ) = 0 ) |
| 43 |
37 42
|
nsyl |
⊢ ( 𝜑 → ¬ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } ) |
| 44 |
|
nelne1 |
⊢ ( ( ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝑈 ∧ ¬ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } ) → 𝑈 ≠ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } ) |
| 45 |
32 43 44
|
syl2anc |
⊢ ( 𝜑 → 𝑈 ≠ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } ) |
| 46 |
45
|
necomd |
⊢ ( 𝜑 → { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } ≠ 𝑈 ) |
| 47 |
11 46
|
eqnetrd |
⊢ ( 𝜑 → 𝑄 ≠ 𝑈 ) |