Metamath Proof Explorer


Theorem ply1annig1p

Description: The ideal Q of polynomials annihilating an element A is generated by the ideal's canonical generator. (Contributed by Thierry Arnoux, 9-Feb-2025)

Ref Expression
Hypotheses ply1annig1p.o 𝑂 = ( 𝐸 evalSub1 𝐹 )
ply1annig1p.p 𝑃 = ( Poly1 ‘ ( 𝐸s 𝐹 ) )
ply1annig1p.b 𝐵 = ( Base ‘ 𝐸 )
ply1annig1p.e ( 𝜑𝐸 ∈ Field )
ply1annig1p.f ( 𝜑𝐹 ∈ ( SubDRing ‘ 𝐸 ) )
ply1annig1p.a ( 𝜑𝐴𝐵 )
ply1annig1p.0 0 = ( 0g𝐸 )
ply1annig1p.q 𝑄 = { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂𝑞 ) ‘ 𝐴 ) = 0 }
ply1annig1p.k 𝐾 = ( RSpan ‘ 𝑃 )
ply1annig1p.g 𝐺 = ( idlGen1p ‘ ( 𝐸s 𝐹 ) )
Assertion ply1annig1p ( 𝜑𝑄 = ( 𝐾 ‘ { ( 𝐺𝑄 ) } ) )

Proof

Step Hyp Ref Expression
1 ply1annig1p.o 𝑂 = ( 𝐸 evalSub1 𝐹 )
2 ply1annig1p.p 𝑃 = ( Poly1 ‘ ( 𝐸s 𝐹 ) )
3 ply1annig1p.b 𝐵 = ( Base ‘ 𝐸 )
4 ply1annig1p.e ( 𝜑𝐸 ∈ Field )
5 ply1annig1p.f ( 𝜑𝐹 ∈ ( SubDRing ‘ 𝐸 ) )
6 ply1annig1p.a ( 𝜑𝐴𝐵 )
7 ply1annig1p.0 0 = ( 0g𝐸 )
8 ply1annig1p.q 𝑄 = { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂𝑞 ) ‘ 𝐴 ) = 0 }
9 ply1annig1p.k 𝐾 = ( RSpan ‘ 𝑃 )
10 ply1annig1p.g 𝐺 = ( idlGen1p ‘ ( 𝐸s 𝐹 ) )
11 issdrg ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ↔ ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐸s 𝐹 ) ∈ DivRing ) )
12 5 11 sylib ( 𝜑 → ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐸s 𝐹 ) ∈ DivRing ) )
13 12 simp3d ( 𝜑 → ( 𝐸s 𝐹 ) ∈ DivRing )
14 4 fldcrngd ( 𝜑𝐸 ∈ CRing )
15 12 simp2d ( 𝜑𝐹 ∈ ( SubRing ‘ 𝐸 ) )
16 1 2 3 14 15 6 7 8 ply1annidl ( 𝜑𝑄 ∈ ( LIdeal ‘ 𝑃 ) )
17 eqid ( LIdeal ‘ 𝑃 ) = ( LIdeal ‘ 𝑃 )
18 2 10 17 9 ig1prsp ( ( ( 𝐸s 𝐹 ) ∈ DivRing ∧ 𝑄 ∈ ( LIdeal ‘ 𝑃 ) ) → 𝑄 = ( 𝐾 ‘ { ( 𝐺𝑄 ) } ) )
19 13 16 18 syl2anc ( 𝜑𝑄 = ( 𝐾 ‘ { ( 𝐺𝑄 ) } ) )